We obtain the K-groups of the operator ideals contained in the class of Riesz operators. And based on the results, we calculate the K-groups of the operator algebras on HD nspaces and QDn spaces.
This paper firstly discusses the existence of strongly irreducible operators on Banach spaces. It shows that there exist strongly irreducible operators on Banach spaces with w*-separable dual. It also gives some properties of strongly irreducible operators on Banach spaces. In particular, if T is a strongly irreducible operator on an infinite-dimensional Banach space, then T is not of finite rank and T is not an algebraic operator. On Banach spaces with subsymmetric bases, including infinite-dimensional separable Hilbert spaces, it shows that quasisimilarity does not preserve strong irreducibility. In addition, we show that the strong irreducibility of an operator does not imply the strong irreducibility of its conjugate operator, which is not the same as the property in Hilbert spaces.