We present a quantum key distribution scheme using a weak-coupling cavity QED regime based on quantum dense coding.Hybrid entanglement statesof photons and electrons are used to distribute information.We just need to transmit photons without storing them in the scheme.The electron confined in a quantum dot,which is embedded in a microcavity,is held by one of the legitimate users throughout the whole communication process.Only the polarization of a single photon and spin of electron measurements are applied in this protocol,which are easier to perform than collective-Bell state measurements.Linear optical apparatus,such as a special polarizing beam splitter in a circular basis and single photon operations,make it more flexible to realize under current technology.Its efficiency will approach 100%in the ideal case.The security of the scheme is also discussed.
Braunstein proposed an algorithm to distinguish the Boolean functions of two different weights.Here we implement the algorithm in a two-qubit nuclear magnetic resonance quantum information processor.The experiment shows that the algorithm could distinguish the Boolean functions of two different weights efficiently.
The four-body interaction plays an important role in many-body systems, and it can exhibit interesting phase transition behaviors. In this letter, we report the experimental demonstration of a four-body interaction in a four-qubit nuclear magnetic resonance quantum information processor. The strongly modulating pulse is used to implement spin selective excitation. The results show a good agreement between theory and experiment.
An entanglement measure,multiple entropy measures(MEMS) was proposed recently by using the geometric mean of partial entropies over all possible i-body combinations of the quantum system.In this work,we study the average subsystem von Neumann entropies of the linear cluster state and investigated the quantum entanglement of linear cluster states in terms of MEMS.Explicit results with specific particle numbers are calculated,and some analytical results are given for systems with arbitrary particle numbers.Compared with other example quantum states such as the GHZ states and W states,the linear cluster states are "more entangled" in terms of MEMS,namely their averaged entropies are larger than the GHZ states and W states.
By generalizing the Holstein-Primakoff realization and the Dyson realization of the Lie algebra SU(2),various realizations of the deformed angular momentum algebra Rc0,c1,c2q,s,a five-parameter deformed SU(2) by combining Witten's two deformation schemes,are investigated in terms of the single boson and the single inversion boson respectively.For each kind,the unitary realization,the non-unitary realization,and their connection by the corresponding similarity transformation are respectively discussed.
A two-step quantum secure direct dialogue protocol using Einstein-Podolsky-Rosen(EPR)pair block is proposed.In the protocol,the dialogue messages are encoded on series of qubits and sent through a quantum channel directly.The security of the protocol is assured by its connection to the two-step quantum secure direct communication protocol,which has been proved secure.This protocol has several advantages.It is a direct communication protocol that does not require a separate classical communication for the ciphertext.It has high capacity as two bits of secret messages can be transmitted by an EPR pair.As a dialogue protocol,the two parties can speak to each other either simultaneously or sequentially.