设计制备了一种新型微孔介孔复合核壳结构钛硅分子筛TS-1@Mesosilica(TS-1@MS),核为MFI结构钛硅分子筛TS-1,壳层为以非离子表面活性剂P123为模板剂组装形成的介孔氧化硅.壳层氧化硅具有三维蠕虫状孔道结构,有利于微孔和介孔部分的连通及反应物和产物的扩散.通过沉积沉淀法将金纳米粒子负载在壳层介孔孔道,和TS-1中的钛活性中心协同,形成适合于C3H6和H2、O2直接气相环氧化制备环氧丙烷(PO)的双功能催化材料.实验结果表明,Au/TS-1@MS在空速8000 mL g 1h 1、温度473 K条件下连续反应132 h,活性和选择性没有明显下降,丙烯转化率保持在3.7%左右,PO选择性87%以上.
A novel versatile photocatalyst, FDU-PdPcS, was prepared by immobilizing palladium phthalocyaninesulfonate (PdPcS) onto the FDU-15 mesopolymer via multi-step chemical modification processes involving chloromethylation of the FDU-15 mesopolymer first with chloromethyl methyl ether, a subsequent amination reaction with ethylenediamine, and finally modification with palladium phthalocyaninesulfonate via ionic interaction. The obtained FDU-PdPcS photocatalyst was characterized by the X-ray diffraction (XRD), UV-Vis spectrosopy and inductively coupled plasma (ICP) techniques. This photocatalyst not only affords a high dispersion of monomeric PdPcS molecules, which may further be stabilized by the π-electron of benzene rings of FDU-15, but also provides a number of diamino groups inside the mesopores, which could be advantageous for the photodegradation of phenolic pollutants. In photodegradation studies of phenolic pollutants, the FDU-PdPcS catalyst exhibited excellent visible light photocatalytic activity and reusability. The photodegradation products of phenol and bisphenol A were investigated by the gas chromatoghraphy-mass spectrometry (GC-MS) technique. The results showed that the photodegradation products were composed of carboxylic acids and CO2. Isopropanol, sodium azide and benzoquinone were used as hydroxyl radical (OH.), singlet oxygen (1O2) and superoxide radical (O2.-) scavengers, respectively. The results suggested that 1O2 and O2. were the prominent active species during the photodegradation process. A possible mechanism for the photodegradation of phenol was also discussed.