The time-dependent Navier-Stokes equations with leak boundary conditions are investigated in this paper. The equivalent variational inequality is derived, and the weak and strong solvabilities of this variational inequality are obtained by the Galerkin approximation method and the regularized method. In addition, the continuous dependence property of solutions on given initial data is establisbed, from which the strong solution is unique.
In this article a new principle of geometric design for blade's surface of an impeller is provided.This is an optimal control problem for the boundary geometric shape of flow and the control variable is the surface of the blade.We give a minimal functional depending on the geometry of the blade's surface and such that the flow's loss achieves minimum.The existence of the solution of the optimal control problem is proved and the Euler-Lagrange equations for the surface of the blade are derived.In addition,under a new curvilinear coordinate system,the flow domain between the two blades becomes a fixed hexahedron,and the surface as a mapping from a bounded domain in R2 into R3,is explicitly appearing in the objective functional.The Navier-Stokes equations,which include the mapping in their coefficients,can be computed by using operator splitting algorithm.Furthermore,derivatives of the solution of Navier-Stokes equations with respect to the mapping satisfy linearized Navier-Stokes equations which can be solved by using operator splitting algorithms too.Hence,a conjugate gradient method can be used to solve the optimal control problem.
In this paper,we improved the regularity results of obstacle problems,in which the smooth conditions of the coefficients aij(x) are released from C1() to L∞(Ω).
The stationary and nonstationary rotating Navier-Stokes equations with mixed boundary conditions are investigated in this paper. The existence and uniqueness of the solutions are obtained by the Galerkin approximation method. Next, θ-scheme of operator splitting algorithm is applied to rotating Navier-Stokes equations and two subproblems are derived. Finally, the computational algorithms for these subproblems are provided.
In this paper, a full discrete two-level scheme for the unsteady Navier-Stokes equations based on a time dependent projection approach is proposed. In the sense of the new projection and its related space splitting, non-linearity is treated only on the coarse level subspace at each time step by solving exactly the standard Galerkin equation while a linear equation has to be solved on the fine level subspace to get the final approximation at this time step. Thus, it is a two-level based correction scheme for the standard Galerkin approximation. Stability and error estimate for this scheme are investigated in the paper.