A locally convex space is said to be a Gateaux differentiability space (GDS) provided every continuous convex function defined on a nonempty convex open subset D of the space is densely Gateaux differentiable in .D.This paper shows that the product of a GDS and a family of separable Prechet spaces is a GDS,and that the product of a GDS and an arbitrary locally convex space endowed with the weak topology is a GDS.
The question of establishing measure theory for statistical convergence has been moving closer to center stage, since a kind of reasonable theory is not only fundamental for unifying various kinds of statistical convergence, but also a bridge linking the studies of statistical convergence across measure theory, integration theory, probability and statistics. For this reason, this paper, in terms of subdifferential, first shows a representation theorem for all finitely additive probability measures defined on the σ-algebra of all subsets of N, and proves that every such measure can be uniquely decomposed into a convex combination of a countably additive probability measure and a statistical measure (i.e. a finitely additive probability measure μ with μ(k) = 0 for all singletons {k}). This paper also shows that classical statistical measures have many nice properties, such as: The set of all such measures endowed with the topology of point-wise convergence on forms a compact convex Hausdorff space; every classical statistical measure is of continuity type (hence, atomless), and every specific class of statistical measures fits a complementation minimax rule for every subset in N. Finally, this paper shows that every kind of statistical convergence can be unified in convergence of statistical measures.
By a ball-covering B of a Banach space X, we mean that it is a collection of open balls off the origin whose union contains the sphere of the unit ball of X. The space X is said to have a ball-covering property, if it admits a ball-covering consisting of countably many balls. This paper, by constructing the equivalent norms on l~∞, shows that ball-covering property is not invariant under isomorphic mappings, though it is preserved under such mappings if X is a Gateaux differentiability space; presents that this property of X is not heritable by its closed subspaces; and the property is also not preserved under quotient mappings.
This paper shows that every non-separable hereditarily indecomposable Banach space admits an equivalent strictly convex norm, but its bi-dual can never have such a one; consequently, every non-separable hereditarily indecomposable Banach space has no equivalent locally uniformly convex norm.
Based on the synthesis and analysis of recursive receivers, a new algorithm, namely partial grouping maximization likelihood algorithm, is proposed to achieve satisfactory performance with moderate computational complexity.During the analysis, some interesting properties shared by the proposed procedures are described.Finally, the performance assessment shows that the new scheme is superior to the linear detector and ordinary grouping algorithm, and achieves a bit-error rate close to that of the optimum receiver.