The broadband terahertz (THz) emission from drifting two-dimensional electron gas (2DEG) in an AI- GaN/GaN heterostructure at 6 K is reported. The devices are designed as THz plasmon emitters according to the Smith-Purcell effect and the 'shallow water' plasma instability mechanism in 2DEG. Plasmon excitation is excluded since no signature of electron-density dependent plasmon mode is observed. Instead, the observed THz emission is found to come from the heated lattice and/or the hot electrons. Simulated emission spectra of hot electrons taking into account the THz absorption in air and Fabry-Pérot interference agree well with the experiment. It is confirmed that a blackbody-like THz emission will inevitably be encountered in similar devices driven by a strong in-plane electric field. A conclusion is drawn that a more elaborate device design is required to achieve efficient plasmon excitation and THz emission.
In the terahertz(THz) regime,the active region for a solid-state detector usually needs to be implemented accurately in the near-field region of an on-chip antenna.Mapping of the near-field strength could allow for rapid verification and optimization of new antenna/detector designs.Here,we report a proof-of-concept experiment in which the field mapping is realized by a scanning metallic probe and a fixed AlGaN/GaN field-effect transistor.Experiment results agree well with the electromagnetic-wave simulations.The results also suggest a field-effect THz detector combined with a probe tip could serve as a high sensitivity THz near-field sensor.
Plasmon modes in graphene can be tuned into resonance with an incident terahertz electromagnetic wave in the range of 1–4 THz by setting a proper gate voltage. By using the finite-difference-time-domain(FDTD) method, we simulate a graphene plasmon device comprising a single-layer graphene, a metallic grating, and a terahertz cavity. The simulations suggest that the terahertz electric field can be enhanced by several times due to the grating–cavity configuration. Due to this near-field enhancement, the maximal absorption of the incident terahertz wave reaches up to about 45%.