A preferable honeycomb ceramics of Al2TiO5-TiO2-SiO2 doped by CeO2 and Er2O3 with high performance was prepared by means of extrusion molding and the effects of CeO2 and Er2O3 on the mechanical strength, thermal stability, and sintering temperature of ATS ceramics were mainly investigated. The experimental results and the microscopic analysis by scanning electron microscope, X-ray powder diffxaction, and TG-DSC showed that adding CeO2 and Er2O3 into ATS could prohibit the growth of their crystal grains and make their size uniform, which finally decrease its sintering temperature, and also enhance its mechanical performance as well as thermal stability. After the reforming, ATS doped by 0.5% CeO2 +0.5% Er2O3 was sintered at 1250 ℃, its bending strength reached to 177A MPa and thermal expansion coefficient was 3.8 ~ 10^-6/℃ at 25 - 1000℃, which provided a promising basis of making monolithic honeycomb catalyst of deNOx.
Complexation and interaction between silver and amino group were applied to induce an efficient immobilization of papain on silica spheres.Tbe silver nanoparticles were deposited on the silica spheres before p apainwas coupled to the silica spheres. The silica spheres with silver nanoparticles were characterized by high resolution transmission electron microscopy (HR-TEM), Fournier transform infrared spectroscopy (FT-IR), and UV-Vis scanning spectrometer. FT-IR spectrum was also used to characterize the immobilized and free papain. Effect of some factors on the activities of the immobilized papain was investigated. It was observed that the coupled yield and relative activity of the papain on Ag/SiO2 were 1.17 and 1.86 times of those on the bare SiO2, respectively. At an optimum concentration of silver, theobserved activity of the immobilized papain was 2.1 timesof that on the bare.silica.In addition, the maximum specific activity of papain immobilized on Ag/SiO2 was 819.9 U·mg·^-1, which is slightly lower than that of the free papain, 906.2 U·mg^-1 . Stability of the immobilized papain was also examined. The resuits indicate that the silver nanoparticles successfully induce a fine immobilization of papain.