The crystallization behavior and kinetics of CaO-MgO-Al2O3 SiO2(CMAS) glass with the Fe2O3 content ranging from zero to 5%were investigated by differential scanning calorimetry(DSC).The structure and phase analyses were made by Fourier transform infrared spectroscopy(FT-IR) and X-ray diffraction(XRD).The experiment results show that the endothermic peak temperature about 760℃ is associated with transition and the exothermic peak temperature about 1000℃ is associated with crystallization.The crystallization peak temperature decreases with increasing the Fe203 content.The crystallization mechanism is changed from two-dimensional crystallization to one-dimensional growth,and the intensity of diopside peaks becomes stronger gradually.There is a saltation for the crystallization temperature with the addition of 0.5%Fe2O3 due to the decomposition of Fe2O3.Si-O-Si,O-Si-O and T-O-T(T=Si,Fe,Al) linkages are observed in Fe2O3-CaO-MgO-Al2O3-SiO2 glass.
The feasibility study of the AlCl(g) generated by Al_2O-AlCl_2-C system under vacuum was carried out by thermodynamic analysis and CASTEP package of the Material Studio program which was based on density functional theory(DFT) formalism. Thermodynamic calculations indicate that Al Cl and CO molecules can be formed under conditions of temperature 1760 K and the pressure of 60 Pa. The interaction of Al_2O and AlCl_2 with C shows that the chemical adsorption of Al_2O and AlCl_2 does take place on C(001) crystal plane, and at the same time, new chemical bond is formed between Al atom in Al_2O and Cl atoms from one of the Al—Cl bonds in AlCl_2. The results, after 1.25 ps dynamics simulation, indicate that adsorbed Al Cl molecules are generated and CO molecule will be formed in this system, and they will escape from C(001) surface after a longer period of dynamic simulation time. It means that the reaction of Al_2O and AlCl_2 with C can be carried out under given constraint condition.
Desulfurization experiments of CuO, γ-Al2O3 and CuO/γ-Al2O3 were made in simulated flue gas by means of thermogravimetric analysis. It is found that reaction activities of CuO supported on γ-Al2O3 could be highly improved. Desulfurization kinetics of CuO/γ-Al2O3 was studied in the temperature range of 250 °C-400 °C and SO2 concentration of 0.1%-0.9%. The experimental data were tested and compared with kinetics models of volume reaction model(VRM), grain size model(GSM), random pore model(RPM) and pore-blocking model(PBM). Correlation analysis shows that VRM and RPM models do not fit experimental data well. GSM contradicts with the changes in the physical and chemical properties of Cu O/γ-Al2O3 as the desulfurization proceeds. It is found that PBM is consistent with the change of pore structure of CuO/γ-Al2O3 sorbent during desulfurization process and predicts the conversion-time curves of the sorbent well. Meanwhile, kinetics parameters are obtained and discussed.
To make sure the intermediate products of the carbothermic reduction of Al2O3 process, such as Al4CO4, Al2CO and Al4C3,and the interaction of AlCl, AlCl2, AlCl3 with Al4CO4, Al2CO and Al4C3, respectively, thermodynamic analyses were used to study the chloride reaction production of them under the vacuum situation. The stable structures and electronic properties of AlCl, AlCl2 and AlCl3 adsorbed on Al4CO4, Al2CO and Al4C3 were calculated by first-principles calculations by the CASTEP module in the Materials Studio program. The results show that the AlCl3 and AlCl2 molecules have decomposed on the plane of Al4C3(001), while there are no obvious decomposition of AlCl3 and AlCl2 on Al4CO4(001) and Al2CO(001) planes. The adsorption of AlCl on the Al4CO4(001)and Al2CO(001) planes is stronger than that on the Al4C3(001) plane. The interaction strength of AlCl3, as well as AlCl2, with Al4CO4,Al2CO and Al4C3 is in the sequence of Al4CO4Al2CO〉Al4C3.