Generally, the phase of the cold-atom interferometer is extracted from the atomic interference fringe, which can be obtained by scanning the chirp rate of the Raman lasers at a given interrogation time T. If mapping the phase shift for each T with a series of measurements, the extraction time is limited by the protocol of each T measurement, and therefore increases dramatically when doing fine mapping with a small step of T. Here we present a new method for rapid extraction of the phase shift via phase demodulation. By using this method, the systematic shifts can be mapped though the whole interference area. This method enables quick diagnostics of the potential cause of the phase shift in specific time. We demonstrate experimentally that this method is effective for the evaluation of the systematic errors of the cold atomic gravimeter. The systematic phase error induced by the quadratic Zeeman effect in the free-falling region is extracted by this method. The measured results correspond well with the theoretic prediction and also agree with the results obtained by the fringe fitting method for each T.
We investigate the transitions between energy levels and parity symmetry in an effective two-level polar molecule system strongly coupled with a quantized harmonic oscillator. By the dressed-state perturbation theory, the transition diagrams between the dressed-state energy levels are presented clearly and show that the odd (even) parity symmetry is broken by the permanent dipole moment (PDM) of the polar molecules. By the analytical and numerical methods, we find that when the coupling strength and the PDM increase, the more frequency components are induced by the counter-rotating terms and PDM.
Rb atom motion in a magneto–optical trap(MOT) consisting of a partially spatially coherent laser(PSCL) is investigated theoretically. The spatial coherence of the laser is controlled by the electro–optic crystal. The instantaneous spatial distribution of the dissipative force induced by the PSCL on an Rb atom is varying with time stochastically. The simulated results indicate that compared with a fully coherent laser, the spatial coherent laser has effects on the atomic trajectories;however, the capture velocity and the escape velocity are kept the same. The main reason is that the spatial coherence of the laser fluctuates temporally and spatially, but the average photon scattering rate varies little, which makes the total number of atoms and the atomic density distribution unchanged.
The stabilizing and shifting of laser frequency are very important for the interaction between the laser and atoms. The modulation transfer spectroscopy for the 87Rb atom with D2 line transition F = 2 →F' = 3 is used for stabilizing and shifting the frequency of the external cavity grating feedback diode laser. The resonant phase modulator with electro-optical effect is used to generate frequency sideband to lock the laser frequency. In the locking scheme, circularly polarized pump- and probe-beams are used. By optimizing the temperature of the vapor, the pump- and probe-beam intensity, the laser linewidth of 280 kHz is obtained. Furthermore, the magnetic field generated by a solenoid is added into the system. Therefore the system can achieve the frequency locking at any point in a range of hundreds of megahertz frequency shifting with very low power loss.
We present an experimental and theoretical investigation of the coherent population trapping (CPT) resonance excited on the D1 line of 87Rb atoms by bichromatic linearly polarized laser light. The experimental results show that a lin||lin tran- sition scheme is a promising alternative to the conventional circular-circular transition scheme for an atomic magnetometer. Compared with the circular light transition scheme, linear light accounts for high-contrast transmission resonances, which makes this excitation scheme promising for high-sensitivity magnetometers. We also use linear light and circular light to detect changes of a standard magnetic field, separately.
A three-level lambda system driven by multicolor control, pump, and probe fields is investigated. The pump and probe fields are derived from the same laser with opposite propagating directions. Due to the Doppler effect, the zero group-velocity atoms face bichromatic fields, while other atoms face trichromatic fields. The atomic medium shows distinct characteristics and exhibits simultaneous electromagnetically induced transparency(EIT) and electromagnetically induced absorption(EIA) at two frequencies. EIT and EIA peaks have a fixed relationship with frequency, which is determined by the Doppler shifts.
We experimentally demonstrate a simple modulation-free scheme for ofset locking the frequency of a laser using bufer gas-induced resonance. Our scheme excludes the limitation of low difraction efciency and laser input intensity when an acousto-optic modulator is applied to shift the laser frequency from the resonance. We show the stabilization of a strong 795- nm laser detuned up to 550 MHz from the 87Rb 5S1/2 F=2→5P1/2F'=2 transition. The locking range can be modifed by controlling the bufer gas pressure. A laser line width of 2 MHz is achieved over 10 min.