A small scale isotropic mass transfer model was developed for the local liquid side mass transfer coefficients in gas-liquid-solid three-phase flow airlift loop reactor for Newtonian and non-Newtonian fluids. It is based onHigbie's penetration theory and Kolmogoroff's theory of isotropic turbulence withwhere ε1 is local rate of energy dissipation, Af is the local microscale, η1 is the local Kolmogoroff scale and D is the diffusion coefficient. The capability of the proposed model is discussed in the light of experimental data obtained from 12 L gas-liquid-solid three-phase flow airlift loop reactor using Newtonian and non-Newtonian fluids. Good agreement with the experimental data was obtained over a wide range of conditions suggesting a general applicability of the proposed model.
A new process for the direct chlorination of 2-chloro-5-methylpyridine to yield 2-chloro-5-chloro-methylpyridine in an airlift loop reactor (ALR) has been studied. Five main reaction conditions including TR, na/ns, cp, Qg and dD/dR were optimized. The average molar yield and purity of 2-chloro-5-chloromethylpyridine obtained were 79% and 98.5% respectively under the optimum operating conditions. Finally, the efficiency for the preparation of 2-chloro-5-chloromethylpyridine with ALR and stirred tank reactor (STR) respectively was compared.