Abundant terrigenous triterpenoid ketones and a series of hopanoid ketones were detected in a peat sample from the recent Gannan Marsh. The identifications of pen-tacyclic triterpenoid ketones are discussed in detail. Based on the compositional features of pentacyclic triterpenoid ketones in the sample, it is proposed that terrigenous triterpenoid kentones originate directly from organisms or are diagenetic oxidation products of their alcohols, and hopanoid ketones are formed from hopanoids (e.g. hopanoid alcohols and hopenes) by chemical and biochemical processes. These data provide evidence for the applied studies of pentacyclic triterpenoid ketones as biomarker compounds.
DUAN YiLanzhou Institute of Geology, Chinese Academy of Sciences, Lanzhou 730000, China
Carbon isotopes of individual lipids in typical organisms from the Nansha sea area were measured by the GC-IRMS analytical technique. δ13C values of saturated fatty acids in different organisms examined are from 25.6‰ to 29.7‰ with the average values ranging from 26.4‰ to 28.2‰ and the variance range of 1.8‰ between different organisms is also observed. Unsaturated fatty acids have heavy carbon isotopic compositions and the mean differences of 2.9‰–6.8‰ compared to the same carbon number saturated fatty acids. δ13C values of n-alkanes range from 27.5‰ to 29.7‰ and their mean values, ranging from 28.6‰ to 28.9‰, are very close in different organisms. The mean difference in δ13C between the saturated fatty acids and n-alkanes is only 1.5‰, indicating that they have similar biosynthetic pathways. The carbon isotopic variations between the different carbon-number lipids are mostly within ±2.0‰, reflecting that they experienced a biosynthetic process of the carbon chain elongation. At the same time, the carbon isotopic genetic relationships between the biological and sedimentary lipids are established by comparative studies of carbon isotopic compositions of individual lipids in organisms and sediments from the Nansha sea area, which provides scientific basis for carbon isotopic applied research of individual lipids.
Carbon isotopes are measured for individual long-chain n-alkanes in sediments from the Nansha Sea. The features of carbon isotopic compositions of individual n-alkanes and their origins are studied. The results show that the long-chain n-alkanes have a light carbon isotopic composition and a genetic feature of mixing sources, and low-latitude higher plants and microbes are considered to be their main end member sources. Based on the abundances and carbon isotopic compositions of individual n-alkanes, the fractional contributions of the two end member sources to individual n-alkanes are quantitatively calculated by using a mixing model. The obtained data indicate that the fractional contributions of the two biological sources are different in the three samples. A trend is that the contribution of microbes increases with the depth. These results provide the theory basis and quantitatively studied method for carbon isotopic applied research of individual n-alkanes.
DUAN Yi & WANG ZhipingState Key Laboratory of Gas Geochemistry, Lanzhou Institute of Geology, Chinese Academy of Sciences, Lanzhou 730000, China