The single-molecule surface-enhanced Raman scattering (SERS) spectra of Rhodamine 6G (R6G) in an aqueous environment under non-resonance conditions are studied. Series of spectra are recorded in time- mapping mode, and intensity fluctuations of SERS signals and spectral diffusion are observed. The corre- lations between the presence frequency of SERS spectra and number of hot spots as well as the quantity of molecules in scattering volume are examined thoroughly. The results indicate that only molecules located at hot spots produce good signal-to-noise ratio Raman spectra and the origin of fluctuating SERS signals are mainly ascribed to the movement of hot spots.
The porous Co3O4 nanowires have been successfully synthesized via modified template method. A possible growth mechanism governing the formation of such 1D nanowires is proposed. The as-prepared products have been characterized by X-ray Powder Diffraction (XRD), Extended X-ray Absorption Fine-structure (EXAFS), High-resolution Transmission Electron Microscopy (HRTEM) and N2 adsorption/desorption analysis. Our systematic studies have revealed that the porous Co3O4 nanowires show excellent gas sensing performances, which demonstrate the potential application of the 1D nanostructured Co3O4 in the detection of the ethanol gas as a sensor material. The improved performances are owing to its large specific surface area and porous morphology.
MA MaiXiaPAN ZhiYunGUO LinLI JingHongWU ZiYuYANG ShiHe
Self-assembly of nanocrystals can not only lead to a better understanding of inter-particle acting force, but also enable rational building of complex and functional materials for future nanodevices. Here by utilizing polyvinylpyrrolidone (PVP) as the as capping and structure directing agents, hierarchical Mn304 architectures involving coil-like nanorings, hexagonal nanoframes, and nanodisks are conveniently synthesized by a one-pot solution method. The sophisticated assemblies are proven to be me- diated by the PVP soft templates formed at varied concentrations. The driving forces of self-assembled complex nanostructures and the unique role of PVP concentration are discussed. Magnetic properties of the as assembled Mn3O4 rings are also studied by a SQUID system, which shows the typical side effect of Curie temperature.
Antimony oxychloride Sb8O11Cl2(H2O)6 products with various morphologies including sheaf-like,rhombic-plate,oval leaf-like and quasi-wafer have been successfully synthesized via a mild and facile solution route at room temperature.The morphologies and structures of the as-prepared samples were characterized by X-ray powder diffraction(XRD),scanning electron microscopy(SEM) and transmission electron microscopy(TEM).A possible formation mechanism of these structures is proposed according to the experimental results and analysis.
The Co3O4 nanowires have been successfully synthesized via modified template method.The as-prepared products have been characterized by EDS,TEM and HRTEM analysis.The magnetic behavior of it is investigated by a magnetic property measurement system.The nanowires exhibit some novel magnetic properties,which are different from its bulk material.The temperature dependence curves of magnetization in zero-field-cooling and field-cooling exhibit two peaks of antiferromagnetic at blocking temperature of~23 K and~31 K,respectively.The field dependent M(H) curves of the Co_3O_4 nanowires at T = 5 and 300 K both exhibit PM properties.Moreover,the diameter of nanowires is hence determined according to the finite size effect as approximately 7-11 nm,in consistent with the characterizations by HRTEM.
Mai Xia MaWei Meng ChenLin GuoJing Hong LiChin Ping ChenShi He Yang
Single-crystalline Li-doped Co3O4 truncated octahedra with different doping contents were synthesized by a simple combustion method with the fuel of multi-walled carbon nanotubes(MWCNTs).Controlled experiments showed that the pristine well-defined Co3O4 octahedra were obtained with exposed surfaces of {111} planes without lithium doping.In comparison with the octahedra,the truncated Co3O4 octahedra were composed of original {111} planes and extra {100} planes.It could be attributable to the selective adsorption of lithium ions on the {100} planes,making these planes with higher surface energy coexist with the crystal faces of {111}.Furthermore,the Li-doped truncated octahedra and undoped octahedra were used as catalysts in CO oxidation and as anode materials for Li-ion batteries(LIBs).The measurements exhibited that the Li-doped octahedra with added {100} crystal faces showed improved catalytic activity and electrochemical property because of the exposure of the higher energy faces of {100} and enhanced conductivity by Li doping.