AA7085 aluminum alloys with different Cu/Mg ratios (0.67, 1.0, 1.06, 1.6) were prepared by ingot metallurgy method. The effects of Cu/Mg ratio on the microstructure, mechanical properties and corrosion behavior of the AA7085 alloys were investigated by optical microscope, scanning electron microscope (SEM), mechanical properties and corrosion testing. The results indicate that a better recrystallization inhibition and corrosion resistance can be achieved when Cu/Mg ratio is 1.6. When Cu/Mg ratio is 0.67, the alloy reveals better mechanical properties, and the tensile strength and yield strength of AA7085 alloys are 586 and 550 MPa, respectively. Moreover, both the mechanical properties and corrosion resistance of the alloy are reduced when Cu/Mg ratio is equal to 1.0.
A solid state synthesis of ultrafine/nanocrystalline WC-10Co composite powders was reported from WO3 , Co3O4 and carbon powders after reduction and carburization at relatively low temperatures in a short time under pure H2 atmosphere. The effects of ball milling time and reaction temperature on the preparation of ultrafine/nanocrystalline WC-Co composite powders were studied using X-ray diffraction and scanning electron microscope (SEM). The results show that fine mixed oxide powders (WO3 , Co3O4 and carbon powders) can be obtained by long time ball milling. Increasing the reaction temperature can decrease the formation of Co3W3C and graphite phases and increase the WC crystallite size. Long-time ball milling and high reaction temperature are favorable to obtain fine and pure composite powders consisting of nanocrystalline WC from WO3 , Co3O4 and carbon powders.
Mechanical properties and microstructures of AZ31 magnesium alloys containing different impurity levels but having the same alloying element content, were investigated at ambient temperature. These AZ31 alloys were produced by semi-continuous casting, wherein the content of impurity was varied systematically. Microstructure observation shows that finer grains are existent in the alloy with lower impurity level. Tensile testing reveals that a reduction of impurity content results in a noticeable increase of the strength and elongation in the alloys in the cast, homogenized and extruded states. As the impurity content decreases from 0.0462wt% to 0.0163wt%, the ultimate tensile strength is evidently enhanced by 62 MPa and the elongation is nearly doubled in the homogenized specimen. The observed property improvement was discussed in terms of the microstructure variation with impurity reduction.