您的位置: 专家智库 > >

国家自然科学基金(71090400)

作品数:6 被引量:54H指数:3
相关作者:杜学美胡培杨锋梁樑吴华清更多>>
相关机构:中国科学技术大学同济大学西南交通大学更多>>
发文基金:国家自然科学基金更多>>
相关领域:自动化与计算机技术经济管理自然科学总论医药卫生更多>>

文献类型

  • 6篇中文期刊文章

领域

  • 3篇自动化与计算...
  • 2篇经济管理
  • 1篇医药卫生
  • 1篇自然科学总论

主题

  • 2篇TRANSF...
  • 2篇COMMIT...
  • 1篇电子商务
  • 1篇信息管理
  • 1篇远程
  • 1篇远程网
  • 1篇远程网络
  • 1篇商家
  • 1篇商务
  • 1篇上线
  • 1篇食道
  • 1篇食道癌
  • 1篇数据包络
  • 1篇数据包络分析
  • 1篇肿瘤
  • 1篇肿瘤早期
  • 1篇网络
  • 1篇网络信息
  • 1篇物流
  • 1篇零售

机构

  • 2篇中国科学技术...
  • 1篇安徽医科大学...
  • 1篇合肥工业大学
  • 1篇西南交通大学
  • 1篇同济大学

作者

  • 1篇夏琼
  • 1篇吴华清
  • 1篇杨林
  • 1篇梁樑
  • 1篇杨锋
  • 1篇胡培
  • 1篇杜学美
  • 1篇王平

传媒

  • 1篇中国科学技术...
  • 1篇价格月刊
  • 1篇管理科学学报
  • 1篇系统管理学报
  • 1篇Journa...
  • 1篇Fronti...

年份

  • 1篇2021
  • 1篇2019
  • 1篇2018
  • 1篇2015
  • 1篇2014
  • 1篇2012
6 条 记 录,以下是 1-6
排序方式:
Transfer active learning by querying committee被引量:1
2014年
In real applications of inductive learning for classifi cation, labeled instances are often defi cient, and labeling them by an oracle is often expensive and time-consuming. Active learning on a single task aims to select only informative unlabeled instances for querying to improve the classifi cation accuracy while decreasing the querying cost. However, an inevitable problem in active learning is that the informative measures for selecting queries are commonly based on the initial hypotheses sampled from only a few labeled instances. In such a circumstance, the initial hypotheses are not reliable and may deviate from the true distribution underlying the target task. Consequently, the informative measures will possibly select irrelevant instances. A promising way to compensate this problem is to borrow useful knowledge from other sources with abundant labeled information, which is called transfer learning. However, a signifi cant challenge in transfer learning is how to measure the similarity between the source and the target tasks. One needs to be aware of different distributions or label assignments from unrelated source tasks;otherwise, they will lead to degenerated performance while transferring. Also, how to design an effective strategy to avoid selecting irrelevant samples to query is still an open question. To tackle these issues, we propose a hybrid algorithm for active learning with the help of transfer learning by adopting a divergence measure to alleviate the negative transfer caused by distribution differences. To avoid querying irrelevant instances, we also present an adaptive strategy which could eliminate unnecessary instances in the input space and models in the model space. Extensive experiments on both the synthetic and the real data sets show that the proposed algorithm is able to query fewer instances with a higher accuracy and that it converges faster than the state-of-the-art methods.
Hao SHAOFeng TAORui XU
关键词:CLASSIFICATION
线上线下+物流融合发展的新零售动因与策略被引量:18
2018年
新零售的迅猛发展离不开物流行业的支持,在阐述我国线上线下+物流融合发展背景的基础上,研究了线上线下+物流融合发展的动因,并以苏宁云商为例进行深入探讨,最后提出了新零售背景下企业发展的相关对策及建议。
唐甜甜胡培
关键词:电子商务物流
负面在线评论及商家回复对顾客购买意愿的影响被引量:20
2021年
从负面在线评论比例和失误严重性两个角度出发,通过引入归因理论、感知信任和商家回复等相关内容,探究负面在线评论对潜在顾客购买意愿影响机制和内部机理。对496份调查问卷所得数据进行统计分析,研究结果表明:负面在线评论比例和失误严重性都对潜在顾客购买意愿有显著的负向影响,且两者都通过影响失误的归属性归因、可控性归因、稳定性归因和感知信任影响潜在顾客购买意愿;在负面在线评论比例与失误严重性不同的情况下,商家应采取不同的回复策略实现节约成本与减小损失的目的。
杜学美吴亚伟高慧李美菱
关键词:购买意愿
恶性肿瘤早期辅助诊治的网络信息服务管理系统被引量:2
2015年
恶性肿瘤已经成为全球主要的疾病死亡原因,而恶性肿瘤早诊断、早发现往往可以延长患者的寿命.开发了恶性肿瘤早期辅助诊治网络信息服务管理系统,利用远程网络诊治管理平台对恶性肿瘤患者进行早期诊断并进行个体化、人性化的医疗服务,不仅对临床医生在对患者后期的治疗上有一定的帮助,也能使患者对恶性肿瘤发现后的治疗得到一定的了解,并能主动配合医生的治疗,提高了恶性肿瘤患者生存的信心,延长了恶性肿瘤患者的生命周期.
王平杨林
关键词:远程网络食道癌信息管理
非独立并联生产系统的DEA效率评价研究被引量:10
2012年
对复杂生产系统进行效率评价,是改善其生产效率的基础.针对非独立并联结构生产系统的效率评价问题开展研究.首先,将两阶段非独立并联生产系统等价为先并联后串联结构的混联生产系统;其次,将混联生产系统的整体效率定义为各串联子系统效率的乘积,而各个串联子系统的效率则定义为内部各并联子系统效率的加权和,并给出了对应的DEA效率评价模型;最后,有关定理和算例分析证实了该模型能更合理地评价此类生产系统的技术效率,能够更大程度地挖掘系统整体性能改善的潜力.
夏琼杨锋梁樑吴华清
关键词:数据包络分析并联
Query by diverse committee in transfer active learning被引量:3
2019年
Transfer active learning, which is an emerging learning paradigm, aims to actively select informative instances with the aid of transferred knowledge from related tasks. Recently, several studies have addressed this problem. However, how to handle the distributional differences betwee n the source and target domains remains an open problem. In this paper, a novel transfer active learning algorithm is proposed, inspired by the classical query by committee algorithm. Diverse committee members from both domains are maintained to improve the classification accuracy and a mechanism is included to evaluate each member during the iterations. Extensive experiments on both synthetic and real datasets show that our algorithm performs better and is also more robust than the state-of-the-art methods.
Hao SHAO
关键词:TRANSFERLEARNINGACTIVELEARNINGMACHINELEARNING
共1页<1>
聚类工具0