The formation and distribution of fractures are controlled by paleotectonic stress field, and their preservative status and effects on development are dominated by the modern stress field. Since Triassic, it has experienced four tectonic movements and developed four sets of tectonic fractures in the extra low-permeability sandstone reservoir at the south of western Sichuan depression. The strikes of fractures are in the S-N, NE-SW, E-W, and NW-SE directions respectively. At the end of Triassic, under the horizontal compression tectonic stress field, for which the maximum principal stress direction was NW.SE, the fractures were well developed near the S-N faults and at the end of NE-SW faults, because of their stress concentration. At the end of Cretaceous, in the horizontal compression stress fields of the NE-SW direction, the stress was obviously lower near the NE-SW faults, thus, fractures mainly developed near the S-N faults. At the end of Neogene-Early Pleistocene, under the horizontal compression tectonic stress fields of E-W direction, stress concentrated near the NE-SW faults and fractures developed at these places, especially at the end of the NE-SE faults, the cross positions of NE-SW, and S-N faults. Therefore, fractures developed mostly near S-N faults and NE-SW faults. At the cross positions of the above two sets of faults, the degree of development of the fractures was the highest. Under the modern stress field of the NW-SE direction, the NW-SE fractures were mainly the seepage ones with tensional state, the best connectivity, the widest aperture, the highest permeability, and the minimum opening pressure.
To study the impact of the fractures on development in the ultra-low permeability sandstone reservoir of the Yangchang Formation of the Upper Triassic in the Ordos Basin,data on outcrops,cores,slices,well logging and experiments are utilized to analyze the cause of the formation of the fractures,their distribution rules and the control factors and discuss the seepage flow effect of the fractures. In the studied area developed chiefly high-angle tectonic fractures and horizontal bedding fractures,inter-granular fractures and grain boundary fractures as well. Grain boundary fractures and intragranular fractures serve as vital channels linking intragranular pores and intergranular solution pores in the reservoir matrix,thus providing a good connectivity between the pores in the ultra-low perme-ability sandstone reservoir. The formation of fractures and their distribution are influenced by such external and internal factors as the palaeo-tectonic stress field,the reservoir lithological character,the thickness of the rock layer and the anisotropy of a layer. The present-day stress field influences the preservative state of fractures and their seepage flow effect. Under the tec-tonic effect of both the Yanshan and Himalayan periods,in this region four sets of fractures are distributed,respectively assuming the NE-SW,NW-SE,nearly E-W and nearly S-N orientations,but,due to the effect of the rock anisotropy of the rock formation,in some part of it two groups of nearly orthogonal fractures are chiefly distributed. Under the effect of the present-day stress field,the fractures that assume the NE-SW direction have a good connectivity,big apertures,a high permeability and a minimum starting pressure,all of which are main advantages of the seepage fractures in this region. With the development of oilfields,the permeability of the fractures of dif-ferent directions will have a dynamic change.
ZENG LianBo1,GAO ChunYu2,QI JiaFu1,WANG YongKang2,LI Liang2 & QU XueFeng2 1 State Key Laboratory of Petroleum Resource and Prospecting,China University of Petroleum,Beijing 102249,China