Let R be a Gorenstein ring.We prove that if I is an ideal of R such that R/I is a semi-simple ring,then the Gorenstein flat dimension of R/I as a right R-module and the Gorenstein injective dimension of R/I as a left R-module are identical.In addition,we prove that if R→S is a homomorphism of rings and SE is an injective cogenerator for the category of left S-modules,then the Gorenstein flat dimension of S as a right R-module and the Gorenstein injective dimension of E as a left R-module are identical.We also give some applications of these results.
Let Λ and Γ be left and right Noetherian rings and Λ U a generalized tilting module with Γ = End( Λ U ). For a non-negative integer k, if Λ U is (k - 2)-Gorenstein with the injective dimensions of Λ U and U Γ being k, then the socle of the last term in a minimal injective resolution of Λ U is non-zero.
Let A be an Artinian algebra and F an additive subbifunctor of Ext,(-, -) having enough projectives and injectives. We prove that the dualizing subvarieties of mod A closed under F-extensions have F-almost split sequences. Let T be an F-cotilting module in mod A and S a cotilting module over F = End(T). Then Horn(-, T) induces a duality between F-almost split sequences in ⊥FT and almost sl31it sequences in ⊥S, where addrS = Hom∧(f(F), T). Let A be an F-Gorenstein algebra, T a strong F-cotilting module and 0→A→B→C→0 and F-almost split sequence in ⊥FT.If the injective dimension of S as a Г-module is equal to d, then C≌(ΩCM^-dΩ^dDTrA^*)^*,where(-)^*=Hom(g,T).In addition, if the F-injective dimension of A is equal to d, then A≌ΩMF^-dDΩFop^-d TrC≌ΩCMF^-d ≌F^d DTrC.
In this paper, we first introduce the notion of generalized k-syzygy modules, and then give an equivalent characterization that the class of generalized k-syzygy modules coincides with that ofω-k-torsionfree modules. We further study the extension closure of the category consisting of generalized k-syzygy modules. Some known results are obtained as corollaries.
Chong-hui HUANG & Zhao-yong HUANG Department of Mathematics, Nanjing University, Nanjing 210093, China
Let A and F be artin algebras and ∧UГa paper, we first introduce the notion of k-Gorenstein faithfully balanced selforthogonal bimodule. In this modules with respect to ∧UГ and then characterize it in terms of the U-resolution dimension of some special injective modules and the property of the functors Ext^i (Ext^i (-, U), U) preserving monomorphisms, which develops a classical result of Auslander. As an application, we study the properties of dual modules relative to Gorenstein bimodules. In addition, we give some properties of ∧UГwith finite left or right injective dimension.