Deep large span cut holes are difficult to stabilize. The 7801 cut hole in the Lu'an Wuyang Mine was used as this project's background. The main factors affecting large span cut hole stability are analyzed. Pre- stressed bolting theory was used to design a roof control method for a large span roadway. By reducing the span and applying equal strength coordinated supports the rock could be stabilized. The control prin- ciples and methods are given herein along with the analysis. A double micro arch cross section roadway is defined and its use in solving the current problem is described. Beam arch theory was used to build a model of the double micro arch cross section roadway. A support reverse force model for the arch foot intersection was also derived. A support method based upon reducing the width of the large span in the cut hole is presented. These results show that the reduced span of the roadway roof plus the use of cable anchors and single supports gives an effective way to control the large span cut hole. On site monitoring showed that the reduced span support from the double micro arch cross section roadway design had a significant effect. The roadway surface displacement was small and harmful deformation of the cut hole was effectively controlled. This will ensure its long term stability.
A test method for the non-destructive determination of bolt length,anchoring length,and bolt body force is described.This addresses the problems of low accuracy,limited number of data,and untimely warning signs encountered with existing test methods.Numerical simulations of the bolt,resin,and rock system show that the length accuracy when using the velocity wave is lower than when using the acceleration wave.It is accepted practice to use the acceleration wave for length tests because of improved signal to noise ratios of the waveforms.Laboratory and in situ underground tests showed that the precision of the measurements meets field requirements.Using this method the anchor properties of each single bolt and,thus,the safety of the entire roadway support may be evaluated.