Tensile creep behaviors of the ageing hardened Mg-10Gd-3Y alloy(referred to GW103)were investigated at temperatures up to 300℃.The extruded-T5 specimen exhibited high creep resistance,i.e.the low steady-state creep rate and long creep rupture time,while the better creep properties were observed in the cast-T6 one.The low steady-state creep rate of 1.71×10- 9s -1is obtained at 200℃and 80 MPa for the extruded-T5 GW103 alloy.In addition,the microstructure development of GW103-T5 alloy was also examined after creep exposure at different temperatures.On the other hand,the stress exponent and activation energy were studied in the temperature range of 200-300℃for the extruded-T5 specimens,and the creep mechanism was also discussed.
The microstructures and mechanical properties of Mg-8Li and Mg-8Li-2Al-2RE alloy sheets were evaluated after cold rolling.Both alloys contain α-phase and β-phase which consists of a solid solution of Mg in BCC Li.The proportion ofβ-phase in both alloys is approximately 60%.Theα-phase andβ-phase are elongated approximately parallel to the rolling direction and there is no sign of recrystallization even after being annealed at 200℃for 1 h.The yield strength of Mg-8Li-2Al-2RE sheets is about 165 MPa with elongation of 35%along rolling direction,while the yield strength is about 187 MPa with elongation of 21%along the direction titled 45ü to rolling direction.Theα-phase in both alloys exhibits basal texture,and the intensity of basal texture in Mg-8Li is larger than that in Mg-8Li-2Al-2RE.However,theβ-phase shows(100)texture,and the intensity of(100)texture in Mg-8Li is twice of that in Mg-8Li-2Al-2RE.It could be attributed to the existence of RE-containing particles in Mg-8Li-2Al-2RE.
In order to improve the mechanical properties and corrosion resistance of Mg alloys,the equal channel angular extrusion (ECAE)was employed to fabricate the Mg-5Gd-5Y/Mg-2Zn-1Gd(GW55/ZG21)laminated composites.After fabrication and annealing treatment,the microstructural evolution,phase constitution,microhardness,and bonding strength were investigated on the bonding interface zone of GW55/ZG21 laminated composites.The bonding interface zone of GW55/ZG21 laminated composites comprises a lot of Mg3(Y,Gd)2Zn3 particles along the bonding interface,some rod Mg24(Y,Gd)5 phases on GW55 side,and a precipitation free zone(PFZ)on ZG21 side.After annealing treatment,Mg3(Y,Gd)2Zn3 particles along the bonding interface increase, rod Mg24(Y,Gd)5 phases on GW55 side decrease,and PFZ is broadened.Meanwhile,the hardness on the bonding interface zone decreases and the bonding strength increases from 126 MPa to 162 MPa.
Y and Gd demonstrate anomalous solid solution hardening efficiency,which cannot be understood using the elastic impuritydislocation interaction theory.We performed first-principles calculations to investigate the effect of different alloying elements such as Al,Zn,Y,and Gd on the chemical bonding of Mg solid solutions.The present calculations clearly show that the anomalous solid solution hardening of Y and Gd in Mg may be understood based on the increased bonding strength of both Mg-Y (Gd) and Mg-Mg.
The metastable β' phase is often the most effective hardening precipitate in Mg-Gd based alloys.In this paper,the structural,elastic and electronic properties of the recently identified β'-Mg7Gd precipitate in Mg-Gd binary alloys were investigated using first-principles calculations based on density functional theory.The lattice mismatches between the coherent β'-Mg7Gd precipitate and α-Mg matrix are discussed and used to rationalize the experimentally observed morphology of the precipitate.The mechanical properties were investigated through analysis of the single-crystal elastic constants and the polycrystalline elastic moduli.It is found that β'-Mg7Gd is brittle in nature.Strong covalent bonding in β'-Mg7Gd,as inferred from its electronic structure,further explains its mechanical properties.Our theoretical results show good agreement with experimental measurements.