江苏省自然科学基金(BK2011521)
- 作品数:6 被引量:14H指数:2
- 相关作者:毛启容詹永照白李娟赵小蕾王治锋更多>>
- 相关机构:江苏大学中国联合网络通信有限公司常州纺织服装职业技术学院更多>>
- 发文基金:江苏省自然科学基金国家自然科学基金江苏省科技支撑计划项目更多>>
- 相关领域:自动化与计算机技术更多>>
- 基于特征分组的多核融合在线自适应识别算法被引量:1
- 2013年
- 为提高C-SVM的泛化性能,提出一种基于特征分组的多核融合在线自适应识别算法.此算法首先把特征按照待识别样本集的特性分为若干组,然后根据各组特征的特性采用不同的核函数训练C-SVM模型,并分别把各个模型支持向量间的相似度作为其权重系数,通过自适应样本不断调整权重系数和模型参数,使得C-SVM模型的参数能够随着待识别样本特性的变化而自适应地变化.将此算法应用于非特定人语音情感识别系统,与RBF核、多项式核和Sigmoid核的对比证明了多核融合在线自适应识别算法的优越性,通过与中性语句归一化方法相比证明了本文算法的有效性和稳定性.
- 王治锋毛启容詹永照
- 关键词:C-SVM在线自适应相似度矩阵语音情感识别
- 结合过完备字典与PCA的小样本语音情感识别方法被引量:5
- 2013年
- 针对稀疏表示识别方法需要大量样本训练过完备字典且特征冗余度较高的问题,提出了结合过完备字典学习与PCA降维的小样本语音情感识别算法.该方法首先用PCA降维方法将特征降维,再将处理后的特征用于过完备字典训练与稀疏表示识别方法,从而给出了语音情感特征的稀疏表示方法,并确定了新算法的具体步骤.为验证其有效性,在同等特征维数下,将方法与BP、SVM进行比较,并对比、分析语音情感特征稀疏化前后对语音情感识别率、时间效率以及空间效率的影响.试验结果表明,所提出方法的识别率比SVM与BP高;与采用稀疏化前的特征相比,稀疏化后的特征向量更便于处理,平均识别率提高约15%,时间效率提高近原来的1/2,空间效率提升近原来的1/3.
- 毛启容赵小蕾白李娟王治锋詹永照
- 关键词:语音情感识别识别率
- 基于子编码和全编码联合惩罚的稀疏表示字典学习方法被引量:1
- 2014年
- 针对目前稀疏表示字典学习的惩罚函数版本不一且各有优势的问题,提出基于子编码和全编码联合惩罚的稀疏表示字典学习方法,该方法在字典学习的目标函数中同时加入子编码惩罚函数和全编码惩罚函数。子编码惩罚函数使得学习后的字典在稀疏表示识别时可以用子字典的重构误差和子字典上编码系数的大小来识别,全编码惩罚函数则能直接利用整个字典上的编码系数来识别,通过联合这两个惩罚函数可以获得非常好的识别效果。为了验证所提方法的有效性,在语音情感库和人脸库上与最新的基于字典学习的稀疏表示识别方法 DKSVD和FDDL进行对比,并与著名的识别方法SVM和SRC进行比较,实验结果显示所提方法具有更好的识别性能。
- 董俊健毛启容胡素黎詹永照
- 关键词:惩罚函数语音情感识别人脸识别
- 基于声学上下文的语音情感特征提取与分析被引量:3
- 2013年
- 针对语句之间的情感存在相互关联的特性,本文从声学角度提出了上下文动态情感特征、上下文差分情感特征、上下文边缘动态情感特征和上下文边缘差分情感特征共四类268维语音情感上下文特征以及这四类情感特征的提取方法,该方法是从当前情感语句与其前面若干句的合并句中提取声学特征,建立上下文特征模型,以此辅助传统特征所建模型来提高识别率.最后,将该方法应用于语音情感识别,实验结果表明,加入新的上下文语音情感特征后,六类典型情感的平均识别率为82.78%,比原有特征模型的平均识别率提高了约8.89%.
- 白李娟赵小蕾毛启容吴宝凤
- 关键词:模糊密度语音情感识别
- 基于混合粒子PHD滤波的多目标视频跟踪被引量:2
- 2013年
- 针对可变数目多目标视频跟踪,粒子滤波不能持续维持目标的多模态分布问题,本文提出一种混合粒子概率假设密度(PHD)滤波的多目标视频跟踪算法.该算法首先用K-means算法对粒子进行空间分布聚类,给各粒子群附加身份标签,使各粒子群分别对应混合粒子滤波的各分量,采用相互独立的各分量粒子滤波跟踪各目标,这样提高了目标状态估计的准确性,也能有效维持各目标的多模态分布.实验结果表明,该算法能有效处理新目标出现、合并、分离等多目标跟踪问题.
- 林庆徐小刚詹永照廖定安杨亚萍
- 关键词:概率假设密度多目标跟踪
- 基于情感上下文的语音情感推理算法被引量:2
- 2014年
- 针对前后相邻情感语句的情感变化存在相互关联的特性,提出基于情感上下文的情感推理算法.该算法首先利用传统语音情感特征和上下文语音情感特征分别识别待分析情感语句的情感状态,然后借助情感交互矩阵及两类情感特征识别结果的置信度对待测试语句的情感状态进行融合推理.在此基础上,建立语音情感上下文推理规则,利用该规则根据相邻语句的情感状态对待分析情感语句情感状态进行调整,最终得出待分析情感语句所属的情感类别.在自行录制的包含6种基本情感数据库上的实验结果表明,与仅采用声学特征的方法相比,文中提出方法平均识别率提高12.17%.
- 毛启容白李娟王丽詹永照
- 关键词:语音情感识别