In this work, we developed a templated self-assembly approach to fabricate self-supporting Au/TiO2 binary nanoparticles-nanotubes (NPNTs) for the first time. The stable Au/TiO2 nanoparticles colloids were pre-synthesized and then deposited onto an AAO template, following by a mild calcination process. Au/TiO2 binary NPNTs can be achieved after removing the AAO template by NaOH solution. In addition, Au/TiO2 NPNTs with different thicknesses and size distributions could be achieved by tailoring the process parameters, such as the molar ratio of AuNPs to TiO2NPs, deposition modes and calcinations conditions. Therefore, these findings made controllable formation of Au/TiO2 NPNTs attractive for promising fabrication methodologies of metal/metal oxides NPNTs.
Carbon formation on conventional Ni and Y2O3 stabilized zirconia(Ni/YSZ) anodes is a major problem for direct ethanol solid oxide fuel cells(DE-SOFC). A nanostructure Ru layer was grown in Ni/YSZ anodes through wet impregnation method with RuC l3 solvent at pH =4. Anode-supported Ni-YSZ/YSZ/(La0.8Sr0.2)0.98 MnO 3±δ(LSM) and Ru-Ni-YSZ/YSZ/LSM fuel cells were compared in terms of the performance and carbon formation with ethanol fuel. X-ray diffraction, scanning electron microscopy, energy disperse spectroscopy and electrochemical workstation were used to study the morphology and fuel cell performance. The results indicate that a nano structured and pearl like Ru layer was well dispersed on the surface of Ni-YSZ materials. The single cell with Ru-impregnated Ni/YSZ showed a maximum power density of 369 m W/cm at 750°C, which was higher than Ni-YSZ/YSZ/LSM. Specifically, no carbon was formed in the anode after 1000 min operation. Fuel cell performance and carbon resistance were enhanced with the addition of the Ru layer.
SUN LiangliangZHENG TaoHU ZhiminLUO LinghongWU YefanXU XuCHENG LiangSHI Jijun
We demonstrate a novel preparative strategy for the well-controlled MnCo_2O_(4.5)@MnO_2 hierarchical nanostructures.Bothδ-MnO_2 nanosheets andα-MnO_2 nanorods can uniformly decorate the surface of MnCo_2O_(4.5)nanowires to form core-shell heterostructures.Detailed electrochemical characterization reveals that MnCo_2O_(4.5)@δ-MnO_2 pattern exhibits not only high specific capacitance of 357.5 F g^(-1)at a scan rate of 0.5 A g^(-1),but also good cycle stability(97%capacitance retention after 1000 cycles at a scan rate of 5 A g^(-1)),which make it have a promising application as a supercapacitor electrode material.