您的位置: 专家智库 > >

国家自然科学基金(41271112)

作品数:18 被引量:360H指数:13
相关作者:吴文斌周清波唐华俊杨鹏李正国更多>>
相关机构:中国农业科学院农业资源与农业区划研究所华中师范大学黑龙江省农业科学院更多>>
发文基金:国家自然科学基金中央级公益性科研院所基本科研业务费专项国家重点基础研究发展计划更多>>
相关领域:农业科学自动化与计算机技术经济管理环境科学与工程更多>>

文献类型

  • 13篇中文期刊文章

领域

  • 10篇农业科学
  • 4篇自动化与计算...
  • 3篇经济管理
  • 1篇环境科学与工...

主题

  • 2篇遥感
  • 2篇农业
  • 2篇农作
  • 2篇农作物
  • 2篇作物
  • 2篇NORTHE...
  • 2篇USING
  • 2篇CHANGE...
  • 2篇CLIMAT...
  • 2篇F-1
  • 2篇CROP
  • 1篇地理
  • 1篇多光谱
  • 1篇遥感数据
  • 1篇叶面
  • 1篇叶面积
  • 1篇叶面积指数
  • 1篇源数据
  • 1篇植被
  • 1篇数据融合

机构

  • 5篇中国农业科学...
  • 3篇华中师范大学
  • 1篇中国农业大学
  • 1篇黑龙江省农业...

作者

  • 5篇唐华俊
  • 4篇周清波
  • 4篇吴文斌
  • 3篇余强毅
  • 2篇杨鹏
  • 1篇宋茜
  • 1篇陈学渊
  • 1篇李正国
  • 1篇孟超英
  • 1篇胡琼
  • 1篇陈仲新
  • 1篇崔健
  • 1篇刘轲
  • 1篇吴永常
  • 1篇夏天

传媒

  • 8篇Journa...
  • 3篇中国农业科学
  • 2篇农业工程学报

年份

  • 4篇2017
  • 2篇2016
  • 3篇2015
  • 4篇2014
18 条 记 录,以下是 1-10
排序方式:
耕地格局时空动态变化过程和差异分析——以浙江安吉为例被引量:17
2015年
[目的]耕地是"人类-环境"关系的纽带和桥梁,也是农业土地系统最为重要的组成部分,掌握耕地格局时空动态变化过程和差异,有利于促进耕地合理利用的调整优化,实现耕地资源的可持续性和集约化利用。[方法]基于遥感和地理信息技术,综合采用土地利用动态度模型、土地利用扩展程度综合指数、土地利用转移矩阵等地理计量模型,研究分析1998—2009年浙江安吉耕地格局动态变化的过程与差异。[结果]该区域耕地动态变化过程复杂,水田与旱地是该区域发生转出的主要地类,从转移类型来看,多转移为林地、城镇用地与园地;从转移过程来看,2003—2009年较1998—2003年更加缓和平稳,基本没有发生较为剧烈的变动;2003—2009年,转入为耕地的地类极为单一,转移面积有限,各地类在数量和空间分布上较1998—2003年期间都趋于更加稳定;2003—2009年的耕地变化活跃度要低于1998—2003年,表明2003年以后区域耕地在利用程度与广度方面更加缓和平稳。[结论]区域产业结构和用地政策调整直接影响着耕地格局动态变化的过程和特点,本研究提出的分析方法能快速、客观反映区域耕地的动态变化过程和差异特征,为耕地时空演变研究提供了一种新思路。
陈学渊唐华俊吴永常周清波崔健
关键词:耕地
Spatio-Temporal Changes in the Rice Planting Area and Their Relationship to Climate Change in Northeast China: A Model-Based Analysis被引量:14
2014年
Rice is one of the most important grain crops in Northeast China (NEC) and its cultivation is sensitive to climate change. This study aimed to explore the spatio-temporal changes in the NEC rice planting area over the period of 1980-2010 and to analyze their relationship to climate change. To do so, the CLUE-S (conversion of land use and its effects at small region extent) model was ifrst updated and used to simulate dynamic changes in the rice planting area in NEC to understand spatio-temporal change trends during three periods: 1980-1990, 1990-2000 and 2000-2010. The changing results in individual periods were then linked to climatic variables to investigate the climatic drivers of these changes. Results showed that the NEC rice planting area expanded quickly and increased by nearly 4.5 times during 1980-2010. The concentration of newly planted rice areas in NEC constantly moved northward and the changes were strongly dependent on latitude. This conifrmed that climate change, increases in temperature in particular, greatly inlfuenced the shift in the rice planting area. The shift in the north limit of the NEC rice planting area generally followed a 1°C isoline migration pattern, but with an obvious time-lag effect. These ifndings can help policy makers and crop producers take proper adaptation measures even when exposed to the global warming situation in NEC.
XIA TianWU Wen-binZHOU Qing-boYU Qiang-yiPeter H VerburgYANG PengLU Zhong-junTANG Hua-jun
Interpretation of Climate Change and Agricultural Adaptations by Local Household Farmers: a Case Study at Bin County, Northeast China被引量:9
2014年
Although climate change impacts and agricultural adaptations have been studied extensively, how smallholder farmers perceive climate change and adapt their agricultural activities is poorly understood. Survey-based data (presents farmers' personal perceptions and adaptations to climate change) associated with external biophysical-socioeconomic data (presents real-world climate change) were used to develop a farmer-centered framework to explore climate change impacts and agricultural adaptations at a local level. A case study at Bin County (1980s-2010s), Northeast China, suggested that increased annual average temperature (0.6°C per decade) and decreased annual precipitation (46 mm per decade, both from meteorological datasets) were correctly perceived by 76 and 66.9%, respectively, of farmers from the survey, and that a longer growing season was conifrmed by 70%of them. These reasonably correct perceptions enabled local farmers to make appropriate adaptations to cope with climate change:Longer season alternative varieties were found for maize and rice, which led to a signiifcant yield increase for both crops. The longer season also affected crop choice:More farmers selected maize instead of soybean, as implicated from survey results by a large increase in the maize growing area. Comparing warming-related factors, we found that precipitation and agricultural disasters were the least likely causes for farmers' agricultural decisions. As a result, crop and variety selection, rather than disaster prevention and infrastructure improvement, was the most common ways for farmers to adapt to the notable warming trend in the study region.
YU Qiang-yiWU Wen-binLIU Zhen-huanPeter H VerburgXIA TianYANG PengLU Zhong-junYOU Liang-zhiTANG Hua-jun
基于多光谱与高光谱遥感数据的冬小麦叶面积指数反演比较被引量:48
2016年
近年来,高光谱遥感数据广泛应用于农作物叶面积指数(LAI)反演。与常用的多光谱遥感数据相比,高光谱数据能否提高农作物LAI反演的精度和稳定性还存在争议。针对这一问题,该研究利用实测冬小麦冠层高光谱反射率数据,构造了不同光谱分辨率和波段组合的5种光谱数据。基于ACRM(a two-layer canopy reflectance model)模型、2套参数化方案及上述5种光谱数据,对冬小麦LAI进行反演,分析光谱分辨率、高光谱数据波段选择、模型参数不确定性3方面因素对LAI反演精度与稳定性的影响。研究结果表明:当波段选择适宜、模型参数不确定性较小且光谱数据分辨率较高时,LAI反演精度与稳定性更高,提高光谱分辨率对LAI反演精度的改进作用随光谱分辨率的升高而降低;反之,当高光谱数据波段选择不当或者模型参数不确定性较大时,提高光谱数据的分辨率并未提高LAI反演精度。该研究解释了"高光谱遥感数据能否提高植被参数反演精度"问题,为进一步发挥高光谱数据在农作物LAI反演中的潜力提供了科学参考。
刘轲周清波吴文斌陈仲新唐华俊
关键词:植被遥感光谱分析叶面积指数波段选择
农作物遥感识别中的多源数据融合研究进展被引量:50
2015年
农作物遥感识别是地理学和生态学研究的前沿和热点,多源数据在农作遥感识别中日益发挥重要作用。笔者从多源数据融合的角度,归纳了2000年后多源数据在农作物遥感识别中应用的总体概况,系统梳理并提炼了当前多源数据融合的主要融合技术和融合模式。围绕与多源数据融合和农作物遥感识别相关的关键词,在Google学术、ISI Web of Knowledge和中国知网中对2000—2014年间国内外发表的论文进行检索,并统计不同传感器的使用频率及结合方式。研究表明,以提高空间分辨率为目标的多源数据融合和以提高时间分辨率为目标的多源数据融合技术是当前的两种主要方式,可以在一定程度上实现时空尺度的扩展。前者的融合技术包括图像融合、正态模糊分布神经网络模型、成分替换、半经验数据模型融合及多分辨率小波分解等,可以提升遥感数据的空间分解力和清晰度,较好弱化混合像元产生的影响,但农作物光谱信息有一定程度的丢失或扭曲,农作物空间分布局部细节信息与纹理特征依然会缺失;后者的融合技术形式灵活多样,可分为同源数据联合扩展时序的时空优化技术和异源数据联合扩展时序的时空优化技术,其可以有效排除短时间段内农作物生育期交叉,但易受不同遥感数据源间光谱反射率或植被指数转换模型及光谱波段设置差异的影响。在融合模式方面,根据数据类型分为光学数据的融合、光学数据与微波数据的融合以及遥感与非遥感数据的融合,以实现卫星资源优势互补为宗旨,充分挖掘不同类型农作物在遥感数据上呈现的光谱、时间和空间特征差异信息。同样,农作物遥感识别研究中的多源遥感数据融合也存在诸多挑战,在未来一段时间内,完善不同传感器之间的合作、更深层次挖掘融合信息以及多尺度长时间序列的中高分辨率农作物空间分布数据
宋茜周清波吴文斌胡琼余强毅唐华俊
关键词:农作物多源数据遥感
农业土地系统研究及其关键科学问题被引量:66
2015年
如何科学合理利用土地是实现人类可持续发展的关键。随着人类对土地利用问题愈发关注,在"土地利用/土地覆盖变化"、"全球土地计划"等国际科学研究计划的推动下,"土地系统科学"的学科体系逐步形成,农业土地系统研究成为土地系统科学的热点方向之一。本文以全球土地计划与土地系统科学为指引,旨在明晰"农业土地系统"的概念,系统梳理农业土地系统研究的技术方法、内容对象以及关键科学问题,为进一步丰富和完善土地系统科学学科体系,推动全球变化、粮食安全及农业可持续研究提供参考。研究认为:第一,多维度格局探测与分析是农业土地系统研究的重要基础:农业土地系统不仅关注耕地与其他土地利用类型之间的相互转换特征、规律和过程,而且更为关注耕地内部多熟种植制度、农作物空间格局、利用集约度、综合生产能力等结构和功能的多维变化,因此,需要依靠多学科/数据的交汇、融合等手段来揭示农业土地系统的复杂特征;第二,多模型耦合的过程与机制解析是农业土地系统研究的核心内容:在明晰农业土地系统时空格局特征的基础上,通过建立土地系统格局与其影响因素之间的关系,并将这种关系在时间维度进行扩展,进而实现农业土地系统变化过程和机制的动态表达,目前,土地变化模型的建模手段已从传统单一的地理模型或经济模型研究转向模型耦合研究,以反映农业土地系统中"人类-环境"的复杂关系;第三,多内容的综合效应评估与调控是农业土地系统研究的关键任务:农业土地系统与全球变化、粮食安全及农业可持续发展等问题密切关联,农业土地系统时空格局探测、过程机制解析的最终目的在于通过协调农业土地系统与农业资源、环境和生态的相互关系,考虑不同系统之间的权衡优化关系,追求土地利用的最佳社会、经济和生
唐华俊吴文斌余强毅夏天杨鹏李正国
农作物空间格局变化模拟模型的MATLAB实现及应用被引量:18
2014年
Agent模型是研究农业土地系统复杂性与动态性的有效工具。在农作物空间格局变化模拟模型(CroPaDy,an agent-based model for simulating crop pattern dynamics)概念化设计的基础上,借助MATLAB平台开放性、矩阵运算能力强等特点,实现CroPaDy模型的数值模拟,并以黑龙江省宾县调查数据为依据,完成模型的区域实证研究。基于MATLAB的模型实现过程充分考虑了CroPaDy模型的多层次性(土地流转行为与作物选择行为)成功实现了3个子模块的动态嵌套模拟:1)Agent生成模块。基于已有的多源GIS数据、统计数据、典型调查数据、以及个体的通用规则,利用蒙特卡洛方法生成每一个个体Agent的属性信息;2)Agent分类模块。基于调查数据对受访农户进行态度聚类分析,然后借助人工神经网络方法确定所有生成的Agent所在的类型;3)Agent决策模块。利用概率方法,计算特定周期内每个Agent的决策行为。区域实证研究中,直接将空间耕地网格作为个体Agent,实现区域全覆盖(网格大小设置为114 m×114 m,约等于户均耕地面积),模拟结果表明,研究区2010年玉米、大豆、水稻、烤烟的模拟结果分别为2 6055.9、5 192.2、3 506.8、3 983.9 hm2,利用宾县统计年鉴(2010)进行验证,模型总体模拟精度达90%以上。CroPaDy模型的设计与实现科学合理,具有较强的理论性与可操作性,能够用以表达特定区域内的农作物空间格局及其动态变化过程。
余强毅吴文斌陈羊阳杨鹏孟超英周清波唐华俊
关键词:农作物MATLABAGENT模型土地流转
Estimating the crop leaf area index using hyperspectral remote sensing被引量:18
2016年
The leaf area index(LAI) is an important vegetation parameter,which is used widely in many applications.Remote sensing techniques are known to be effective but inexpensive methods for estimating the LAI of crop canopies.During the last two decades,hyperspectral remote sensing has been employed increasingly for crop LAI estimation,which requires unique technical procedures compared with conventional multispectral data,such as denoising and dimension reduction.Thus,we provide a comprehensive and intensive overview of crop LAI estimation based on hyperspectral remote sensing techniques.First,we compare hyperspectral data and multispectral data by highlighting their potential and limitations in LAI estimation.Second,we categorize the approaches used for crop LAI estimation based on hyperspectral data into three types:approaches based on statistical models,physical models(i.e.,canopy reflectance models),and hybrid inversions.We summarize and evaluate the theoretical basis and different methods employed by these approaches(e.g.,the characteristic parameters of LAI,regression methods for constructing statistical predictive models,commonly applied physical models,and inversion strategies for physical models).Thus,numerous models and inversion strategies are organized in a clear conceptual framework.Moreover,we highlight the technical difficulties that may hinder crop LAI estimation,such as the "curse of dimensionality" and the ill-posed problem.Finally,we discuss the prospects for future research based on the previous studies described in this review.
LIU KeZHOU Qing-boWU Wen-binXIA TianTANG Hua-jun
How do temporal and spectral features .matter in crop classification in Heilongjiang Province, China?被引量:9
2017年
How to fully use spectral and temporal information for efficient identification of crops becomes a crucial issue since each crop has its specific seasonal dynamics. A thorough understanding on the relative usefulness of spectral and temporal features is thus essential for better organization of crop classification information. This study, taking Heilongjiang Province as the study area, aims to use time-series moderate resolution imaging spectroradiometer (MODIS) surface reflectance product (MOD09A1) data to evaluate the importance of spectral and temporal features for crop classification. In doing so, a feature selection strategy based on separability index (SI) was first used to rank the most important spectro-temporal features for crop classification. Ten feature scenarios with different spectral and temporal variable combinations were then devised, which were used for crop classification using the support vector machine and their accuracies were finally assessed with the same crop samples. The results show that the normalized difference tillage index (NDTI), land surface water index (LSWl) and enhanced vegetation index (EVI) are the most informative spectral features and late August to early September is the most informative temporal window for identifying crops in Heilongjiang for the observed year 2011. Spectral diversity and time variety are both vital for crop classification, and their combined use can improve the accuracy by about 30% in comparison with single image. The feature selection technique based on SI analysis is superior for achieving high crop classification accuracy (producers' accuracy of 94.03% and users' accuracy of 93.77%) with a small number of features. Increasing temporal resolution is not necessarily important for improving the classification accuracies for crops, and a relatively high classification accuracy can be achieved as long as the images associated with key phenological phrases are retained.
HU QiongWU Wen-binSONG QianLU MiaoCHEN DiYU Qiang-yiTANG Hua-jun
关键词:MODIS
Mapping regional cropping patterns by using GF-1 WFV sensor data被引量:14
2017年
The successful launched Gaofen satellite no. 1 wide field-of-view (GF-1 WFV) camera is characterized by its high spatial resolution and may provide some potential for regional crop mapping. This study, taking the Bei'an City, Northeast China as the study area, aims to investigate the potential of GF-1 WFV images for crop identification and explore how to fully use its spectral, textural and temporal information to improve classification accuracy. In doing so, an object-based and Random Forest (RF) algorithm was used for crop mapping. The results showed that classification based on an optimized single temporal GF-1 image can achieve an overall accuracy of about 83%, and the addition of textural features can im- prove the accuracy by 8.14%. Moreover, the multi-temporal GF-1 data can produce a classification map of crops with an overall accuracy of 93.08% and the introduction of textural variables into multi-temporal GF-1 data can only increase the accuracy by about 1%, which suggests the importance of temporal information of GF-1 for crop mapping in comparison with single temporal data. By comparing classification results of GF-1 data with different feature inputs, it is concluded that GF-1 WFV data in general can meet the mapping efficiency and accuracy requirements of regional crop. But given the unique spectral characteristics of the GF-1 WFV imagery, the use of textual and temporal information is needed to yield a satisfactory accuracy.
SONG QianZHOU Qing-boWU Wen-binHU QiongLU MiaoLIU Shu-bin
共2页<12>
聚类工具0