Cytoplasmic male sterility exists widely in most natural populations of welsh onion (Alliumfistulosum L.), which makes it possible to breed out many male sterile lines for heterosis utilization. Unfortunately, the breeding of cytoplasmic male sterility in welsh onion has a little progress due to the limitation of its biological characteristic and traditional selection approach. To study the feasibility and the efficiency of utilizing marker assisted selection for male sterile lines in welsh onion, one SCAR marker, SCS13, and one RAPD marker, S2002400, which could distinguish between N and S cytoplasm in several welsh onion cultivars, were identified. The two markers were then confirmed by Southern blotting, and used to screen the N or S cytoplasm of individual plants in seven welsh onion cultivars in this study. Male sterile and fertile plants were evaluated by aceto-carmine dying. The frequency of N-cytoplasmic plants and maintainer genotype was calculated in the seven open populations of welsh onion. The minimum number of plants needed to identify a maintainer was evaluated to be 95% reliable. Results showed that 20 to 80% decrease of crosses and self-crosses for identifying a maintainer genotype could be achieved by the marker-assisted selection compared with traditional selection method. It was proved that the molecular markers could precisely identify cytoplasmic types individually, performed by one generation of cross and two generations of testcrosses and self-crosses. Finally, several maintainer genotype plants were selected with the help of the two markers in the seven cultivars. The screened markers could assist and accelerate sterile and maintainer lines selection with less labor and cost.