The thin-walled tube flexure(TWTF) hinges have important potential application value in the deployment mechanisms of satellite and solar array, but the optimal design of the TWTF hinges haven't been completely solved, which restricts their applications. An optimal design method for the qusai-static folding and deploying of TWTF hinges with double slots is presented based on the response surface theory. Firstly, the full factorial method is employed to design of the experiments. Then, the finite element models of the TWTF hinges with double slots are constructed to simulate the qusai-static folding and deploying non-linear analysis. What's more, the mathematical model of the TWTF flexure hinge quasi-static folding and deploying properties are derived by the response surface method. Considering of small mass and high stability, the peak moment of quasi-static folding and deploying as well as the lightless are set as the objectives to get the optimal performances. The relative errors of the objectives between the optimal design results and the FE analysis results are less than 7%, which demonstrates the precision of the surrogate models. Lastly, the parameter study shows that both the slots length and the slots width both have significant effects to the peak moment of quasi-static folding and deploying of TWTF hinges with double slots. However, the maximum Mises stress of quasi-static folding is more sensitive to the slots length than the slots width. The proposed research can be applied to optimize other thin-walled flexure hinges under quasi-static folding and deploying, which is of great importance to design of flexure hinges with high stability and low stress.
YANG HuiDENG ZongquanLIU RongqiangWANG YanGUO Hongwei
Ball bearings play an important role in various rotating machineries,but the complicated kinematic and tribological features of ball bearings make many aspects of their operating behaviors still inconclusive.Most theoretical analyses of ball bearings up to date are based on either the hypothesis of race control or other empirical models to determine the ball motion of ball bearings,but none of these strategies can reveal and consequently employ the intrinsic coupling mechanism between the spin and the tangential traction of contacting bodies rolling upon one another.To remedy the deficiency of current analytical models for ball bearing analysis,the rolling contact theory is employed to establish an explicit link between motions and interactions within ball bearings.A differential slip model is established to precisely define the slip component due to the significant curvature of the common contact patches between the ball and inner/outer raceways.The creepage and the spin ratio are formulated to accurately define the relative rigid motion between the ball and the inner/outer raceway.Then a quasi-static analytical model is established that can accurately determine the motions of the balls and races of the ball bearing.It can also give a vivid description of the slip and traction distributions within the contact area.The analytical model can be effectively used to analyze the operational conditions and tribological features of solid-lubricated ball bearings.It can also be used optimize the construction of ball bearings for specific applications.
CHEN Wenhua1,2,MA Zikui1,GAO Liang1,LI Xinglin3,and PAN Jun2 1 Institute of Mechanical Design,Zhejiang University,Hangzhou 310027,China 2 Institute of Mechanical Design and Manufacturing,Zhejiang Sci-Tech University,Hangzhou 310018,China 3 State Testing Laboratory of Hangzhou Bearing Test & Research Center,Hangzhou 310022,China
Ball bearings are widely employed mechanical components characterized by high precision and quality,and usually play important roles in various rotary machines and mechanisms.Many advanced applications require a deep understanding of their various kinematic and tribological characteristics that are essential to predict the fatigue endurance,relieve the vibration and minimize the power dissipation of ball bearings in particular applications.An angular contact ball bearing under a specified operating condition is simulated with the quasi-static/creepage analytical model proposed in the preceding article.The results demonstrate that the ball bearing is a statically determinate system.That the balls spin on both inner and outer races means the ball is controlled by neither the inner nor the outer raceway.The friction between the ball and raceway renders the inner and outer contact angles unequal.The larger the coefficient of friction is,the larger the angle deviation.The tangential traction perpendicular to the rolling direction due to the spin induces a gyro-like rotation of the ball with respect to the raceway even if no inertial effects are considered.The tangential elastic compliance of contacting surfaces gives rise to locked areas within the contact patch and transforms the sliding lines from circles into spirals.The differential slip due to the close conformity of the ball and raceway makes the sliding and traction distributions asymmetric,which will influence the location of the spinning center of the ball with respect to the raceway.The quasi-static/creepage model can be used to reveal the operating behaviors of ball bearings running under steady conditions and to optimize the design of ball bearings for specific applications.
CHEN Wenhua1,2,MA Zikui1,GAO Liang1,LI Xinglin3,and PAN Jun2 1 Institute of Mechanical Design,Zhejiang University,Hangzhou 310027,China 2 Institute of Mechanical Design and Manufacturing,Zhejiang Sci-Tech University,Hangzhou 310018,China 3 State Testing Laboratory of Hangzhou Bearing Test & Research Center,Hangzhou 310022,China
Joints are necessary components in the larger space deployable truss structures which have significant effect on the dynamics behavior of these deployable joint-dominated structures. Four kinds of joints' nonlinear force-displacement relationship are analyzed based on describing function method. The dynamic responses of one-DOF jointed system under different exciting force levels are investigated to understand the influence of joint nonlinearity on dynamic responses. The influences of joint characterizing parameters on joint nonlinearities are analyzed. Dynamic responses of the modular beam-like deployable joint-dominated truss structure are tested under different sinusoidal exciting force levels. The experimental results show obvious nonlinear behaviors contributed by joints that dynamic response shifts to lower resonance frequency and higher amplitude with the increase of exciting force. The nonlinearity of the joints in the tested structure is compared with the theoretical results and identified to meet with the hysteresis nonlinearity.
Hong-Wei GuoJing ZhangRong-Qiang LiuZong-Quan DengDeng-Qing Cao