In this paper, we investigate the optical transmission properties of perfect and defective two-segment-connected tri- angular waveguide networks (2SCTWNs) and find that after introducing defects in networks, many groups of transparent extreme narrow photonic passbands (ENPPs) will be created in the middle of the transmission spectra, the number for each group and the group number of ENPPs can he adjusted by the matching ratios of waveguide length (MRWLs), the number of defects, and the number of unit cells of 2SCTWNs. The influences of MRWL, number of defects, and number of unit cells on the number, width, and position of these ENPPs are researched and a series of quantitative rules and prop- erties are obtained. It may be useful for the designing of high-sensitive optical switches, wavelength division multiplexers, extreme-narrowband filters, and other correlative waveguide network devices.
We present an investigation on the propagation properties of the chirped Airy vortex(CAi V) beams through slabs of left-handed materials(LHMs) and right-handed materials(RHMs). We discuss the influence of chirped parameter C on the propagation of the CAi V beams through LHM and RHM slabs. Our simulation results show that a maximum accelerated velocity appears during the propagation process. The intensity concentration of the CAi V beams increases with the absolute value of the chirped parameter. The peak intensity of the CAi V beams changes abruptly, and the chirped parameter plays an active role on the difference of the maximum and the minimum. In the energy flow, we find that the effects of the chirped parameter on the strength of the vortex are different at different propagation distances.