A Constrained Interpolation Profile (CIP)-based model is developed to predict the mooring force of a two-dimensional floating oil storage tank under wave conditions, which is validated against to a newly performed experiment. In the experiment, a box-shaped floating oil storage apparatus is used. Computations are performed by an improved CIP-based Cartesian grid model, in which the THINC/SW scheme (THINC: tangent of hyperbola for interface capturing; SW: Slope Weighting), is used for interface capturing. A multiphase flow solver is adopted to treat the water-air-body interactions. The Immersed Boundary Method (IBM) is implemented to treat the body surface. Main attention is paid to the sum force of mooring line and velocity field around the body. It is found that the sum force of the mooring line increases with increasing wave amplitude. The body suffers from water wave impact and large body motions occur near the free surface. The vortex occurs near the sharp edge, i.e., the sharp bottom comers of the float- ing oil storage tank and the vortex shedding can be captured by the present numerical model. The present model could be further improved by including turbulence model which is currently under development. Comparison between the computational mooring forces and the measured mooring forces is presented with a reasonable agreement. The developed numerical model can predict the mooring line forces very well.
An enhanced numerical model for simulating two-dimensional incompressible viscous flow with distorted free surface is reported. The numerical simulation is carried out through the CIP (Constrained Interpolation Profile)-based method, which is described in the paper. A more accurate interface capturing scheme, the VOF/WLIC scheme (VOF:Volume-of-Fluid;WLIC:weighed line interface calculation), is adopted as the interface capturing method. To assess the developed algorithm and its versatility, a selection of test problems are examined, i.e. the square wave propagation, the Zalesak’s rigid body rotation, dam breaking problem with and without obstacles, wave sloshing in an excited wave tank and interaction between extreme waves and a floating body. Excellent agreements are obtained when numerical results are compared with available analytical, experimental, and other numerical results. These examples demonstrate that the use of the VOF/WLIC scheme in the free surface capturing makes better results and also the proposed CIP-based model is capable of predicting the freak wave-related phenomena.