This paper gives probabilistic expressions of theminimal and maximal positive solutions of the partial differential equation -1/2△v(x) + γ(x)v(x)α = 0 in D, where D is a regular domain in Rd(d ≥ 3) such that its complement Dc is compact, γ(x) is a positive bounded integrable function in D, and 1 <α≤ 2. As an application, some necessary and sufficient conditions for a compact set to be S-polar are presented.
The global supports of super-Poisson processes and super-random walks with a branching mechanism ψ(z)=z^2 and constant branching rate are known to be noncompact. It turns out that, for any spatially dependent branching rate, this property remains true. However, the asymptotic extinction property for these two kinds of superprocesses depends on the decay rate of the branching-rate function at infinity.
In this paper, the existence and smoothness of the collision local time are proved for two independent fractional Brownian motions, through L^2 convergence and Chaos expansion. Furthermore, the regularity of the collision local time process is studied.
We simply call a superprocess conditioned on non-extinction a conditioned superprocess. In this study, we investigate some properties of the conditioned superprocesses (subcritical or critical). Firstly, we give an equivalent description of the probability of the event that the total occupation time measure on a compact set is finite and some applications of this equivalent description. Our results are extensions of those of Krone (1995) from particular branching mechanisms to general branching mechanisms. We also prove a claim of Krone for the cases of d = 3, 4. Secondly, we study the local extinction property of the conditioned binary super-Brownian motion {X t , P μ ∞ }. When d = 1, as t goes to infinity, X t / $ \sqrt t $ converges to ηλ in weak sense under P μ ∞ , where η is a nonnegative random variable and λ is the Lebesgue measure on ?. When d ? 2, the conditioned binary super-Brownian motion is locally extinct under P μ ∞ .
Suppose X is a super-α-stable process in R^d, (0 〈 α〈 2), whose branching rate function is dr, and branching mechanism is of the form ψ(z) = z^1+β (0 〈0 〈β ≤1). Let Xγ and Yγ denote the exit measure and the total weighted occupation time measure of X in a bounded smooth domain D, respectively. The absolute continuities of Xγ and Yγ are discussed.