We address the problem of 3D human pose estimation in a single real scene image. Normally, 3D pose estimation from real image needs background subtraction to extract the appropriate features. We do not make such assumption, In this paper, a two-step approach is proposed, first, instead of applying background subtraction to get the segmentation of human, we combine the segmentation with human detection using an ISM-based detector. Then, silhouette feature can be extracted and 3D pose estimation is solved as a regression problem. RVMs and ridge regression method are applied to solve this problem. The results show the robustness and accuracy of our method.
The query space of a similarity query is usually narrowed down by pruning inactive query subspaces which contain no query results and keeping active query subspaces which may contain objects corre- sponding to the request. However, some active query subspaces may contain no query results at all, those are called false active query subspaces. It is obvious that the performance of query processing degrades in the presence of false active query subspaces. Our experiments show that this problem becomes seriously when the data are high dimensional and the number of accesses to false active subspaces increases as the dimensionality increases. In order to solve this problem, this paper proposes a space mapping approach to reducing such unnecessary accesses. A given query space can be refined by filtering within its mapped space. To do so, a mapping strategy called maxgap is proposed to improve the efficiency of the refinement processing. Based on the mapping strategy, an index structure called MS-tree and algorithms of query processing are presented in this paper. Finally, the performance of MS-tree is compared with that of other competitors in terms of range queries on a real data set.
WANG GuoRen YU Ge, XIN JunChang ZHAO YuHai ZHANG EnDe
A new calibration algorithm for multi-camera systems using 1D calibration objects is proposed. The algorithm inte- grates the rank-4 factorization with Zhang (2004)'s method. The intrinsic parameters as well as the extrinsic parameters are re- covered by capturing with cameras the 1D object's rotations around a fixed point. The algorithm is based on factorization of the scaled measurement matrix, the projective depth of which is estimated in an analytical equation instead of a recursive form. For more than three points on a 1D object, the approach of our algorithm is to extend the scaled measurement matrix. The obtained parameters are finally refined through the maximum likelihood inference. Simulations and experiments with real images verify that the proposed technique achieves a good trade-off between the intrinsic and extrinsic camera parameters.