An enhanced active and selective catalyst consisting of ruthenium supported on dealuminated HY zeolite has been prepared by a wet im- pregnation method. It was found that BET surface area of Ru/HY catalysts significantly increases after HC1 treatment. This treatment also increases the concentration of strong acid sites in the catalyst. The hydrogenolysis of glycerol over 5 wt% Ru/HY catalyst was investigated at 190-220℃ , an initial H2 pressure of 3-6 MPa, and in 20 wt% glycerol aqueous solution, The results indicate that HC1 treated Ru/HY catalyst shows higher activity compared with the untreated Ru/HY catalyst, and that the glycerol hydrogenolysis efficiency is influenced by the porosity and acidity of the support. A selectivity to 1,2-PDO of 81.3% at a glycerol conversion of 60.1% under 3 MPa H2 pressure and 220 ℃ for 10 h was achieved over the modified Ru/HY catalyst with a 1.0 mol/L HC1 treatment. It has also been shown that a longer reaction time, a higher temperature and a higher H2 pressure have the positive effects on the glycerol hydrogenolysis efficiency of the enhanced Ru/HY.
A direct strategy for the creation of defects on carbon nanofibers (CNFs) has been developed by steam treatment.Nitrogen physisorption,XRD,Raman spectra,SEM and TEM analyses proved the existence of the new defects on CNFs.BET surface area of CNFs after steam treatment was enhanced from 20 to 378 m2/g.Pd catalysts supported on CNFs were also prepared by colloidal deposition method.The different activity of Pd/CNFs catalysts in the partial hydrogenation of phenylacetylene further demonstrated the diverse surfaces of CNFs could be formed by steam treatment.
The semi-hydrogenation of alkynols to enols is a crucial process in the production of pharmaceuticals,agrochemicals,fragrances,and flavors that involves a complex set of parallel and consecutive isomerization and hydrogenation reactions and proceeds via several key intermediates.In view of the industrial importance of large-scale enol production through alkynol hydrogenation,various noble and non-noble metal(e.g.,Ni and Pd)-based catalysts promoting this transformation have been developed.This paper reviews the design of highly selective catalysts for the semi-hydrogenation of alkynols,focusing on the role of additives,second metals,catalyst supports,and reaction conditions and combining catalytic reaction kinetics with theoretical calculations to establish the reaction mechanism and the decisive factors for boosting selectivity.Finally,a strategy for designing highly efficient and selective catalysts based on the characteristics of aqueous-phase alkynol hydrogenation is proposed.