A novel Wireless Fidelity (WiFi) over fiber link and a wavelength assignment protocol are proposed to provide sufficient bandwidth and extensive coverage range for the various applications in the Internet of Things (IoT).The performance of the WiFi over fiber-based wireless IoT network is evaluated in terms of error vector magnitude (EVM) and data throughput for both the up and down links between the WiFi central control system and remote radio units (RRUs).The experimental results illustrate the reliability of the fiber transmission of 64 Quadrature Amplitude Modulation (64QAM) WiFi signals by direct analog modulation.In order to efficiently utilize the wavelength resources,we also demonstrated the wavelength assignment protocol by employing optical switching configurations in Central Station (CS) to realize the wavelength switching,and the simulation results indicate the queuing size and the corresponding queue delay for different numbers of available wavelengths.
We demonstrate a 7-bit photonic true-time-delay (TTD) system which uses an 8 × 8 micro-optical-electro- mechanical system (MOEMS) optical switch for phased array antennas (PAAs) beamforming applications. The switch controls the optical signal to pass by the fiber delay lines (FDLs) of different lengths. Different time delays between adjacent channels are obtained due to the chromatic dispersion of FDLs. Therefore, the system cannot be disturbed by the environment. The measured time delay responses are nearly linear with the wavelength spacing between optical carriers as well as the lengths of FDLs, which agrees well with the theoretical analysis.
This paper demonstrates a room-temperature multiwavelength fibre laser with spacing-adjustability and wavelength-tunability. The nonlinear gain of self-excited stimulated Brillouin scattering can suppress mode competition induced by homogeneous broadening of Erbium-doped fibre. With the use of a birefringence fibre loop filter, the wavelength spacing can be adjusted by changing the length of the used birefringence fibre, and the lasing wavelengths can be finely tuned through modifying the filtering profile of the birefringence filter. Multiwavelength output with spectral spacing as small as 0.076 nm and a wavelength number of more than 80 has been successfully produced.
Characteristics of a uni-traveling-carrier photodiode (UTC-PD) are investigated. A hydro-dynamic model is introduced which takes into account the electrons' velocity overshoot in the depletion region, which is a more accurate high speed device than using the normal drift-diffuse model. Based on previous results, two modified UTC-PDs are presented, and an optimized device is obtained, the bandwidth of which is more than twice that of the original.
A scheme for photonic generation of ultra-wideband (UWB) pulses using a semiconductor optical amplifier (SOA) and an electro-absorber (EA) in parallel is proposed and numerically demonstrated. By adjusting the time delay between two pump signals incident into the SOA and the EA, we can obtain monocycle pulses with reversed polarities and different bandwidths. The proposed method is flexible in pulse shaping and easy in practical optimization.