In this paper, a unified model for time-dependent Maxwell equations in dispersive media is considered. The space-time DG method developed in [29] is applied to solve the un-derlying problem. Unconditional L2-stability and error estimate of order O?τr+1+hk+1/2? are obtained when polynomials of degree at most r and k are used for the temporal dis-cretization and spatial discretization respectively. 2-D and 3-D numerical examples are given to validate the theoretical results. Moreover, numerical results show an ultra-convergence of order 2r+1 in temporal variable t.
A fully discrete discontinuous Galerkin method is introduced for solving time-dependent Maxwell’s equations.Distinguished from the Runge-Kutta discontinuous Galerkin method(RKDG)and the finite element time domain method(FETD),in our scheme,discontinuous Galerkinmethods are used to discretize not only the spatial domain but also the temporal domain.The proposed numerical scheme is proved to be unconditionally stable,and a convergent rate O((△t)^(r+1)+h^(k+1/2))is established under the L^(2)-normwhen polynomials of degree atmost r and k are used for temporal and spatial approximation,respectively.Numerical results in both 2-D and 3-D are provided to validate the theoretical prediction.An ultra-convergence of order(△t)^(2r+1) in time step is observed numerically for the numerical fluxes w.r.t.temporal variable at the grid points.