In this paper, a compound binomial model with a constant dividend barrier and random income is considered. Two types of individual claims, main claims and by-claims, are defined, where every by-claim is induced by the main claim and may be delayed for one time period with a certain probability. The premium income is assumed to another binomial process to capture the uncertainty of the customer's arrivals and payments. A system of difference equations with certain boundary conditions for the expected present value of total dividend payments prior to ruin is derived and solved. Explicit results are obtained when the claim sizes are Kn distributed or the claim size distributions have finite support. Numerical results are also provided to illustrate the impact of the delay of by-claims on the expected present value of dividends.
We consider the compound binomial model, and assume that dividends are paid to the shareholders according to an admissible strategy with dividend rates bounded by a constant.The company controls the amount of dividends in order to maximize the cumulative expected discounted dividends prior to ruin. We show that the optimal value function is the unique solution of a discrete HJB equation. Moreover, we obtain some properties of the optimal payment strategy, and offer a simple algorithm for obtaining the optimal strategy. The key of our method is to transform the value function. Numerical examples are presented to illustrate the transformation method.
This article studies the optimal proportional reinsurance and investment problem under a constant elasticity of variance (CEV) model. Assume that the insurer's surplus process follows a jump-diffusion process, the insurer can purchase proportional reinsurance from the reinsurer via the variance principle and invest in a risk-free asset and a risky asset whose price is modeled by a CEV model. The diffusion term can explain the uncertainty associated with the surplus of the insurer or the additional small claims. The objective of the insurer is to maximize the expected exponential utility of terminal wealth. This optimization problem is studied in two cases depending on the diffusion term's explanation. In all cases, by using techniques of stochastic control theory, closed-form expressions for the value functions and optimal strategies are obtained.
For a non-Gaussian Levy model, it is shown that if the model exists a trivial arbitrage-free interval, option pricing by mean correcting method is always arbitrage-free, and if the arbitrage-free interval is non-trivial, this pricing method may lead to arbitrage in some cases. In the latter case, some necessary and sufficient conditions under which option price is arbitrage-free are obtained.