The Ordos block is a stable tectonic unit since the Cenozoic. Whether low-resistivity layers exist in the middle and lower crust of this kind block is an open question. This work attempts to reveal the entire crustal structure of the block based on interpretation of magnetotelluric data collected along the profile across this region. The result shows that a layered structure characterizes the crust of the Ordos block, with a low-resistivity layer at depth of about 20km, presumably associated with fluids there. In contrast, in the areas of active tectonics on the east and west of the block, there are no such layered electric structures in the crust, and the low-resistivity zones may be related to the decollement zones (or ductile shear zones) in the crust. The difference in electric structure of crust between the Ordos Block and neighboring areas is of significance to analyze the movement and deformation of varied blocks in the continent.
Zhao Guoze Zhan Yan Wang Lifeng Wang Jijun Tang Ji Chen Xiaobin Xiao Qibin
Near-surface earth resistivity and underground water level anomalies were recorded at Qingdao seismic observatory of Shandong Province before and after the MS8.0 Wenchuan Earthquake of May 12,2008.The observed data of earth resistivity at the observatory revealed that the underground water level dropped and the resistivity increased.It is postulated that in the special tectonic setting at Qingdao observatory,the variation of stress and strain caused the change of water level beneath the station,thus,leading to the variation of earth resistivity.The relationship between the variation of stress field and the change of earth resistivity before earthquake is analyzed.