In this article, we prove the boundedness of commutators generated by BochnerRiesz operators below the critical index and BMO functions on the class of radial functions in Lp(Rn) with |1/p-1/2|〈(1+2α)/(2n).
We investigate two classes of orthonormal bases for L^2([0, 1)^n). The exponential parts of those bases are multi-knot piecewise linear functions which are called spectral sequences. We characterize the multi-knot piecewise linear spectral sequences and give an application of the first class of piecewise linear spectral sequences.