Analytical and semi-analytical solutions are presented for anisotropic functionally graded beams subject to an arbitrary load,which can be expanded in terms of sinusoidal series.For plane stress problems,the stress function is assumed to consist of two parts,one being a product of a trigonometric function of the longitudinal coordinate(x) and an undetermined function of the thickness coordinate(y),and the other a linear polynomial of x with unknown coefficients depending on y.The governing equations satisfied by these y-dependent functions are derived.The expressions for stresses,resultant forces and displacements are then deduced,with integral constants determinable from the boundary conditions.While the analytical solution is derived for the beam with material coefficients varying exponentially or in a power law along the thickness,the semi-analytical solution is sought by making use of the sub-layer approximation for the beam with an arbitrary variation of material parameters along the thickness.The present analysis is applicable to beams with various boundary conditions at the two ends.Three numerical examples are presented for validation of the theory and illustration of the effects of certain parameters.
HUANG DeJin1,2,DING HaoJiang1 & CHEN WeiQiu3 1 Key Laboratory of Soft Soils and Geoenvironmental Engineering,Ministry of Education,Zhejiang University,Hangzhou 310027,China
In this paper, the specific solutions of orthotropic plane problems with body forces are derived. Then, based on the general solution in the case of distinct eigenvalues and the specific solution for density functionally graded orthotropic media, a series of beam problem, including the problems of cantilever beam with body forces depending only on z or on x coordinate and expressed by z or x polynomial is solved by the principle of superposition and the trial-and-error method.
The elastodynamic problems of magneto-electro-elastic hollow cylinders in the state of axisymmetric plane strain case can be transformed into two Volterra integral equations of the second kind about two functions with respect to time. Interpolation functions were introduced to approximate two unknown functions in each time subinterval and two new recursive formulae are derived. By using the recursive formulae, numerical results were obtained step by step. Under the same time step, the accuracy of the numerical results by the present method is much higher than that by the traditional quadrature method.