A new inversion algorithm for simultaneously reconstructing the slip vectors and rupture times of a propagating finite fault is developed based on the recent progress in the nonlinear pro-gramming study. To check the validity of this new inversion algorithm, several numerical tests are conducted. The results show that this new source rupture process inversion algorithm is computa-tionally efficient and numerically stable, and depends less on the initial model compared with the two popular inversion methods, i.e. the linear matrix method and the global stochastic search method. Therefore, this new inversion algorithm is expected to be useful in inverting earthquake rupture processes.
Based on the stochastic AMR model, this paper constructs man-made earthquake catalogues to investigate the property of parameter estimation of the model. Then the stochastic AMR model is applied to the study of several strong earthquakes in China and New Zealand. Akaikes AIC criterion is used to discriminate whether an accelerating mode of earthquake activity precedes those events or not. Finally, regional accelerating seismic activity and possible prediction approach for future strong earthquakes are discussed.
The new inversion algorithm developed based on the recent progress in thenonlinear programming study by us is used to invert the earthquake source process of Chi Chiearthquake M_w7.6, 20 Semptember,1999, Taiwan. A curve fault model is constructed in our inversionto make the fault model close to the real rupturing fault to reduce the influence from thediscrepancy between the constructed fault model and the real rupturing fault. The results show that(1) the rupture process of the Chi Chi earthquake source lasted about 32 seconds and the mainfaulting occurred between 6th to 21st second after the start of the ruptures and the high slip areawere mainly located at the northern segment of the fault. (2) The slip was dominated by thrustfaulting. The average rake angle was 64.5°, which was very consistent with those inverted by USGS,Harvard and CWB (Central Weather Bureau of Taiwan). The amount of the moment inverted in this paperwas 7.76x10^(20) NM, which was a slightly bigger than those inverted by USGS and Harvard. (3) Aclear nucleation step existed in the source faulting process and it lasted about 6 seconds. Themoment release rate accelerated obviously at the end of the nucleation step. The faulting startedfrom the southern segment and mainly occurred at the northern segment after 10 seconds. At the endof this paper, we analyzed the reliability of the inversion result via comparing with the GPSobservations and discussed its scientific signification.
Using multifractal spectrum estimating method based on the wavelet, the multifractal characteristics of GSR of earthquakes in China, Japan and New Zealand regions have been studied. It is shown that the multifractal spectra of GSR are obviously different in inter- and intra- plate regions. Moreover, though Japan and New Zealand are all located at the boundary of plates, West and East China are all characterized of continental tectonic structure, the multifractal spectra of GSR for both the two regions are also different. Further analysis shows that the natures of multifractal spectra of GSR are somehow related to the complexity of tectonics.
The generation mechanism of Lg wave from underground nuclear explosion is still not clear at present. The gen-eral viewpoint is that the S wave generated by the near-source scattering of explosion-generated Rg appears to be the primary contributor to the low-frequency Lg (0.2~2.0 Hz) from nuclear explosions. The viewpoint is supported by the analysis of regional data from several Yucca Flats, NTS explosions by Patton and Taylor (1995), who fur-ther indicated that the prominent low-frequency spectral null in Lg is due to Rg from a compensated linear vector dipole (CLVD) source. In the paper, the data from Kazakstan Test Sites are investigated by a spectral ratio method. We have found that the spectral ratio of Lg waves is characterized by a spectral scalloping and a pronounced null, and the spectral null does not shift with spall dwell times, showing a strong dependence on shot depth and a very good agreement with those expected from Rg due to a CLVD source.