The fact that the photoluminescence properties of quantum dots are always strongly influenced by the environment limits the scope of further progress in the field of QD' bio-applications. In this paper, the effects of immunoglobulin G (IgG) on the photo-luminescence properties and stability of water-soluble CdSe/ZnS core-shell quantum dots coated with amphiphilic poly (acrylic acid) (PAA) are studied. Photoluminescence (PL) spectra, UV-vis spectra and excited state lifetime measurements are used to characterize the influence of different protein molecules, such as IgG (goat anti-human IgG, rabbit anti-human IgG, human IgG, and goat anti-human IgG-human IgG conjugates), avidin and bovine serum albumin (BSA) on the PL properties of QDs. The PL intensity and stability of CdSe/ZnS are largely enhanced compared to that of pure CdSe/ZnS QDs when the IgG molecules are added into the QD solution. The PL intensity increases with increasing the IgG concentration, but there appears no influence on the PL peak and a full width at half maximum (FWHM). The PL evolution of QDs as a function of different protein molecules depends on the structure of protein molecules, which is used as a sensor to recognize human IgG. It is inferred that the interaction between PAA coating layer and IgG molecules results in the enhancement of PL intensity. The study of the effect of pH and ion strength on optical properties of QD-IgG mixed solution, compared with the pure QD solution, suggests that pH value and ion strength do not destroy the interaction between the PAA coating layer and IgG. Excited state lifetime analysis indicates that the PL enhancement comes from the passivation of surface of the QDs with the PAA coating layer. IgG molecules have no effects on the properties of the biological system but can increase the stability and PL intensity of CdSe/ZnS QDs, which will enlarge the application of QDs in biomedicine and other fields.