The fermentation with mold metarrhizium anisopliae has been carried out to determine the relationship between mycelial morphology and growth.Like the biomass concentration,the mycelial morphology seems to be coupled to growth phases:the fractal dimension,a feature calculated from the morphological images,increases during the late lag phase and the early exponential phase,and culminates at a value near 2.4 at half of the exponential phase.This can be attributed to the marked change of rough and smooth pellet proportions during growth and the change can be well expressed by the fractal analysis of mycelial morphology.The mycelial morphology is also strongly related to the biotransformation activity:a mycelial sample was withdrawn from the culture to use for fractal analysis before the steroid substrate (16α,17α epoxy 4 pregnene 3,20 dione) was added;the higher fractal dimension corresponds to the higher conversion rate of steroid biotransformation.And the maximum of fractal dimension appeared prior to the maximum of biomass concentration.It is therefore possible to utilize the fractal dimension curve to supervise the fermentation process more timely and availably than to use the conventional biomass curve to do.
Enhancing the dispersion and dissolution of substrate particles in substrate water suspension is a feasible way to improve steroid bioconversion. The aim of the present study is to investigate the effects of applying surfactant to microbial conversion system on the dispersion, solubilization and in turn bioconversion of steroid substrate. The model system is hydroxylation of substrate 19α- 17α-epoxy- 4-pregnene- 3.2It-dine by microbial enzymes from Rhizopus nigricanl. The results show that the presence of substrate leads to an increase in critical micelle concentration ( CMC) of surfactant PSE compared with the normal CMC of PSE in aqueous solution. The grinding time during substrate suspension preparation affects the substrate aqueous solubility differently with the varied surfactant concentrations while barely making any difference in substrate solubility in the absence of surfactant. The properly prolonged grinding time can make up for the loss in substrate solubility arising from the reduction in surfactant concentration. The surfactant complexes composed of surfactants PSE and MGE at appropriate ratios are screened out with orthodoxy experiment method. the interaction between PSE and MGE exerts the most prominent effects on substrate bioconversion, and the surfactant complexes show more beneficial effects on steroid bioconversion than the surfactant PSE used alone.