By taking cross-wind forces acting on trains into consideration, a dynamic analysis method of the cross-wind and high-speed train and slab track system was proposed on the basis of the analysis theory of spatial vibration of high-speed train and slab track system. The corresponding computer program was written by FORTRAN language. The dynamic responses of the high-speed train and slab track under cross-wind action were calculated. Meanwhile, the effects of the cross-wind on the dynamic responses of the system were also analyzed. The results show that the cross-wind has a significant influence on the lateral and vertical displacement responses of the car body, load reduction factor and overturning factor. For example, the maximum lateral displacement responses of the car body of the first trailer with and without cross-wind forces are 32.10 and 1.60 mm, respectively. The maximum vertical displacement responses of the car body of the first trailer with and without cross-wind forces are 6.60 and 3.29 mm, respectively. The maximum wheel load reduction factors of the first trailer with and without cross-wind forces are 0.43 and 0.22, respectively. The maximum overturning factors of the first trailer with and without cross-wind forces are 0.28 and 0.08, respectively. The cross-wind affects the derailment factor and lateral Sperling factor of the moving train to a certain extent. However, the lateral and vertical displacement responses of rails with the crnss-wind are almost the same as those without the cross-wind. The method presented and the corresponding computer program can be used to calculate the interaction between trains and track in cross-wind.
Based on the construction bridge of Xiamen-Shenzhen high-speed railway(9-32 m simply-supported beam + 6×32 m continuous beam),the pier-beam-track finite element model,where the continuous beam of the ballast track and simply-supported beam are combined with each other,was established.The laws of the track stress,the pier longitudinal stress and the beam-track relative displacement were analyzed.The results show that reducing the longitudinal resistance can effectively reduce the track stress and the pier stress of the continuous beam,and increase the beam-track relative displacement.Increasing the rigid pier stiffness of continuous beam can reduce the track braking stress,increase the pier longitudinal stress and reduce the beam-track relative displacement,Increasing the rigid pier stiffness of simply-supported beam can reduce the track braking stress,the rigid pier longitudinal stress and the beam-track relative displacement.
研究大跨度铁路连续梁-拱组合桥与无缝线路的相互作用问题,采用非线性弹簧单元模拟梁轨接触,以某桥(82.9+172+82.9)m连续梁拱桥为例,建立考虑拱肋、横撑、斜撑、吊杆、主梁、轨道以及相邻路基梁轨相互作用模型,系统分析温度荷载、活载、制动力、风荷载、混凝土收缩徐变、支座不均匀沉降作用下连续梁-拱桥无缝线路纵向力的分布规律。研究结果表明:钢轨在跨中位置对梁体升温敏感程度大于梁端位置;单线活载与制动或牵引作用下,钢轨应力在中间加载时比左、右侧加载大;纵向风力达到1 k N/m以上的地区,须考虑风荷载的影响;同时,混凝土收缩徐变在降温荷载工况下,对钢轨应力有不利影响;支座沉降作用下,钢轨最大应力为4.9 MPa,设计时应予以考虑。