您的位置: 专家智库 > >

国家自然科学基金(40801070)

作品数:5 被引量:47H指数:3
相关作者:赵英时朱小华冯晓明宋小宁更多>>
相关机构:中国科学院中国科学院生态环境研究中心中国科学院研究生院更多>>
发文基金:国家自然科学基金国家重点基础研究发展计划中国科学院西部行动计划项目更多>>
相关领域:自动化与计算机技术农业科学天文地球生物学更多>>

文献类型

  • 5篇中文期刊文章

领域

  • 2篇天文地球
  • 2篇自动化与计算...
  • 2篇农业科学
  • 1篇生物学

主题

  • 4篇LAI
  • 2篇反演
  • 1篇多尺度
  • 1篇叶面
  • 1篇叶面积
  • 1篇叶面积指数
  • 1篇作物
  • 1篇误差分析
  • 1篇先验
  • 1篇先验知识
  • 1篇空间知识
  • 1篇REMOTE...
  • 1篇ASSESS...
  • 1篇ASSIMI...
  • 1篇BASED_...
  • 1篇ESTIMA...
  • 1篇HYPERI...
  • 1篇INFORM...
  • 1篇INVERS...
  • 1篇差分

机构

  • 2篇中国科学院
  • 2篇中国科学院研...
  • 2篇中国科学院生...

作者

  • 2篇冯晓明
  • 2篇朱小华
  • 2篇赵英时
  • 1篇宋小宁

传媒

  • 2篇Chines...
  • 1篇遥感学报
  • 1篇Scienc...
  • 1篇中国科学:地...

年份

  • 1篇2013
  • 2篇2012
  • 2篇2010
5 条 记 录,以下是 1-5
排序方式:
A Methodology for Estimating Leaf Area Index by Assimilating Remote Sensing Data into Crop Model Based on Temporal and Spatial Knowledge被引量:1
2013年
In this paper,a methodology for Leaf Area Index(LAI) estimating was proposed by assimilating remote sensed data into crop model based on temporal and spatial knowledge.Firstly,sensitive parameters of crop model were calibrated by Shuffled Complex Evolution method developed at the University of Arizona(SCE-UA) optimization method based on phenological information,which is called temporal knowledge.The calibrated crop model will be used as the forecast operator.Then,the Taylor′s mean value theorem was applied to extracting spatial information from the Moderate Resolution Imaging Spectroradiometer(MODIS) multi-scale data,which was used to calibrate the LAI inversion results by A two-layer Canopy Reflectance Model(ACRM) model.The calibrated LAI result was used as the observation operator.Finally,an Ensemble Kalman Filter(EnKF) was used to assimilate MODIS data into crop model.The results showed that the method could significantly improve the estimation accuracy of LAI and the simulated curves of LAI more conform to the crop growth situation closely comparing with MODIS LAI products.The root mean square error(RMSE) of LAI calculated by assimilation is 0.9185 which is reduced by 58.7% compared with that by simulation(0.3795),and before and after assimilation the mean error is reduced by 92.6% which is from 0.3563 to 0.0265.All these experiments indicated that the methodology proposed in this paper is reasonable and accurate for estimating crop LAI.
ZHU XiaohuaZHAO YingshiFENG Xiaoming
关键词:ASSIMILATION
Multi-scale MSDT inversion based on LAI spatial knowledge被引量:6
2012年
Quantitative remote sensing inversion is ill-posed. The Moderate Resolution Imaging Spectroradiometer at 250 m resolution (MODIS_250m) contains two bands. To deal with this ill-posed inversion of MODIS_250m data, we propose a framework, the Multi-scale, Multi-stage, Sample-direction Dependent, Target-decisions (Multi-scale MSDT) inversion method, based on spa- tial knowledge. First, MODIS images (1 km, 500 m, 250 m) are used to extract multi-scale spatial knowledge. The inversion accuracy of MODIS_lkm data is improved by reducing the impact of spatial heterogeneity. Then, coarse-scale inversion is taken as prior knowledge for the fine scale, again by inversion. The prior knowledge is updated after each inversion step. At each scale, MODIS_lkm to MODIS_250m, the inversion is directed by the Uncertainty and Sensitivity Matrix (USM), and the most uncertain parameters are inversed by the most sensitive data. All remote sensing data are involved in the inversion, during which multi-scale spatial knowledge is introduced, to reduce the impact of spatial heterogeneity. The USM analysis is used to implement a reasonable allocation of limited remote sensing data in the model space. In the entire multi-scale inversion process field data, spatial knowledge and multi-scale remote sensing data are all involved. As the multi-scale, multi-stage inversion is gradually refined, initial expectations of parameters become more reasonable and their uncertainty range is effectively reduced, so that the inversion becomes increasingly targeted. Finally, the method is tested by retrieving the Leaf Area Index (LAI) of the crop canopy in the Heihe River Basin. The results show that the proposed method is reliable.
ZHU XiaoHuaFENG XiaoMingZHAO YingShi
关键词:MULTI-SCALE
Remote Sensing of Ecosystem Services:An Opportunity for Spatially Explicit Assessment被引量:18
2010年
Ecosystem service is an emerging concept that grows to be a hot research area in ecology.Spatially explicit ecosystem service values are important for ecosystem service management.However,it is difficult to quantify ecosystem services.Remote sensing provides images covering Earth surface,which by nature are spatially explicit.Thus,remote sensing can be useful for quantitative assessment of ecosystem services.This paper reviews spatially explicit ecosystem service studies conducted in ecology and remote sensing in order to find out how remote sensing can be used for ecosystem service assessment.Several important areas considered include land cover,biodiversity,and carbon,water and soil related ecosystem services.We found that remote sensing can be used for ecosystem service assessment in three different ways:direct monitoring,indirect monitoring,and combined use with ecosystem models.Some plant and water related ecosystem services can be directly monitored by remote sensing.Most commonly,remote sensing can provide surrogate information on plant and soil characteristics in an ecosystem.For ecosystem process related ecosystem services,remote sensing can help measure spatially explicit parameters.We conclude that acquiring good in-situ measurements and selecting appropriate remote sensor data in terms of resolution are critical for accurate assessment of ecosystem services.
FENG XiaomingFU BojieYANG XiaojunLü Yihe
基于LAI空间知识的多尺度多阶段目标决策反演被引量:3
2012年
定量遥感反演由于观测信息量不足,往往是"病态"反演,而且在区域研究中格外突出.本文以MODIS250m估算区域LAI作为典型案例,提出了基于空间知识的多尺度多阶段目标决策反演方法,研究先验知识的引入及其合理使用,试图为解决区域遥感"病态"反演提供一个合理的解决方案.首先,利用不同分辨率的MODIS影像(1km,500m和250m)提取地表的多尺度信息,并将其融入到MODIS较低分辨率数据的多阶段目标决策反演上,通过降低空间异质性影响,提高了粗尺度数据反演参数的准确性;然后,粗尺度反演结果作为细尺度反演的先验知识,再次参与反演,通过多次反演,先验知识实现多次更新.从MODIS_1km到MODIS_250m,在每一个尺度的反演中,用最敏感的数据反演最不确定的参数,实现了有限的数据在模型空间中的合理分配.基于空间知识的多尺度多阶段目标决策反演方法,融合了地面实测数据、空间知识、多尺度遥感观测数据,反演是一个逐步细化的过程,待反演参数的初始期望更加合理、不确定性范围有效缩小,反演目标更加明确.最后利用MODIS数据反演黑河中游农作物区LAI对该方法进行了验证,结果表明这种反演方法较以往传统的区域性参数获取方法更为准确、可靠.
朱小华冯晓明赵英时
关键词:先验知识多尺度
作物LAI的遥感尺度效应与误差分析被引量:23
2010年
以黑河中游盈科绿洲为研究区,利用Hyperion高光谱数据,采用双层冠层反射率模型(ACRM)迭代运算反演LAI;通过LAI的均值化(LAImean)以及Hyperion数据反射率线性累加反演LAI(LAIp),定量分析LAI反演的尺度效应;从模型的非线性和地表景观结构的空间异质性2个方面分析引起反演误差的原因,并在LAI-NDVI回归方程的基础上利用泰勒展开的方法对低分辨率数据反演结果进行了误差纠正。结果表明,地表景观结构的空间异质性是造成多尺度LAI反演误差的关键因素,通过泰勒展开式能很好地实现大尺度数据LAI反演结果的误差纠正。
朱小华冯晓明赵英时宋小宁
关键词:HYPERION叶面积指数反演
共1页<1>
聚类工具0