您的位置: 专家智库 > >

国家自然科学基金(31200927)

作品数:3 被引量:8H指数:2
相关作者:张莉杜立新魏彩虹王慧华曾滔更多>>
相关机构:中国农业科学院北京畜牧兽医研究所四川农业大学更多>>
发文基金:国家自然科学基金中央级公益性科研院所基本科研业务费专项资金项目国家现代农业产业技术体系建设项目更多>>
相关领域:农业科学生物学更多>>

文献类型

  • 3篇中文期刊文章

领域

  • 2篇农业科学
  • 1篇生物学

主题

  • 1篇信号
  • 1篇信号检测
  • 1篇苏尼特羊
  • 1篇全基因
  • 1篇全基因组
  • 1篇全基因组选择
  • 1篇基因
  • 1篇基因组
  • 1篇MULTI
  • 1篇POPULA...
  • 1篇RST
  • 1篇TEST
  • 1篇ANIMAL...
  • 1篇CHIP
  • 1篇FI
  • 1篇SIGNAT...
  • 1篇TRAIT
  • 1篇PARITY
  • 1篇SHEEP
  • 1篇GENOME

机构

  • 1篇四川农业大学
  • 1篇中国农业科学...

作者

  • 1篇张淑珍
  • 1篇王光凯
  • 1篇赵福平
  • 1篇曾滔
  • 1篇王慧华
  • 1篇魏彩虹
  • 1篇杜立新
  • 1篇张莉

传媒

  • 2篇Journa...
  • 1篇中国农业科学

年份

  • 1篇2016
  • 1篇2015
  • 1篇2014
3 条 记 录,以下是 1-3
排序方式:
Genetic parameters for somatic cell score and production traits in the fi rst three lactations of Chinese Holstein cows
2015年
The objectives of this study were to estimate genetic parameters of lactation average somatic cell scores (LSCS) and examine genetic associations between LSCS and production traits in the first three lactations of Chinese Holstein cows using single-parity multi-trait animal model and multi-trait repeatability animal model. There were totally 273605 lactation records of Chinese Holstein cows with first calving from 2001 to 2012. Heritability estimates for LSCS ranged from 0.144 to 0.187. Genetic correlations between LSCS and 305 days milk, protein percentage and fat percentage were -0.079, -0.082 and -0.135, respectively. Phenotypic correlation between LSCS and 305 days milk yield was negative (-0.103 to -0.190). Genetic correlation between 305 days milk and fat percentage or protein percentage was highly negative. Genetic correlation between milk fat percentage and milk protein percentage was highly favorable. Heritabilities of production traits decreased with increase of parity, whereas heritability of LSCS increased with increase of parity.
ZHAO Fu-pingGUO GangWANG Ya-chunGUO Xiang-yuZHANG YuanDU Li-xin
A genome scan of recent positive selection signatures in three sheep populations被引量:3
2016年
Domesticated sheep have been exposed to artificial selection for the production of fiber, meat, and milk as well as to natural selection. Such selections are likely to have imposed distinctive selection signatures on the sheep genome. Therefore, detecting selection signatures across the genome may help elucidate mechanisms of selection and pinpoint candidate genes of interest for further investigation. Here, detection of selection signatures was conducted in three sheep breeds, Sunite (n=66), German Mutton (n=159), and Dorper (n=93), using the Illumina OvineSNP50 Genotyping BeadChip array. Each animal provided genotype information for 43 273 autosomal single nucleotide polymorphisms (SNPs). We adopted two complementary haplotype-based statistics of relative extended haplotype homozygosity (REHH) and the cross-popu- lation extended haplotype homozygosity (XP-EHH) tests. In total, 707,755, and 438 genomic regions subjected to positive selection were identified in Sunite, German Mutton, and Dorper sheep, respectively, and 42 of these regions were detected using both REHH and XP-EHH analyses. These genomic regions harbored many important genes, which were enriched in gene ontology terms involved in muscle development, growth, and fat metabolism. Fourteen of these genomic regions overlapped with those identified in our previous genome-wide association studies, further indicating that these genes under positive selection may underlie growth developmental traits. These findings contribute to the identification of candidate genes of interest and aid in understanding the evolutionary and biological mechanisms for controlling complex traits in Chinese and western sheep.
ZHAO Fu-pingWEI Cai-hongZHANG LiLIU Jia-senWANG Guang-kaiZENG TaoDU Li-xin
苏尼特羊全基因组选择信号检测被引量:6
2014年
【目的】选择信号是物种在进化过程中,经历长期的自然和人工选择在基因组上所留下的印迹。选择信号检测不仅能反映选择对品种培育的作用,还可以作为重要经济性状QTL定位的一个有效方法。苏尼特羊是中国内蒙古地区一个优良的地方绵羊品种,适应于恶劣的戈壁自然环境条件。对苏尼特羊全基因组选择信号检测,不仅能够寻找受正向选择(positive selection)相关的候选基因,揭示重要经济性状的遗传机制,还能为苏尼特羊品种培育过程中受正向选择的性状所经历过长期的人工选育提供遗传学证据。【方法】基于Illumina Ovine SNP50K芯片利用基于单倍型信息的单倍型积分值(integrated haplotype score,iHS)方法对苏尼特羊进行全基因组选择信号检测。首先对SNP芯片数据进行经过质控和单倍型推断后,共剩余42 616个SNP标记用于连锁不平衡(linkage disequilibrium,LD)分析和单倍型推断。然后按照祖先等位基因信息进一步筛选后得到30 537个SNP标记估计用于选择信号检测iHS值,并再以500kb长度作为为一个窗口进行划分一个选择区段,计算窗口内iHS均值,然后进行显著性检验。对具有显著|iHS|值的选择区段基因组区域进行基因注释,并对所检测的候选基因进行GO富集分析。【结果】构建了苏尼特羊的连锁不平衡衰减图谱,发现LD值随着两标记间距离的增大而减小,但也发现某些远距离标记之间存在较高水平的连锁不平衡。通过iHS方法在全基因组范围内共检测到204个具有选择信号的基因组区段,这些区段内与845个候选基因紧密相关。其中有与绵羊角的缺失相关的RXFP2基因,调控一系列控制绵羊毛色基因的ASIP,参与机体神经系统发育的HTR4和SOX10,与胚胎时期神经嵴发育密切相关的SOX10,可以激活骨调控中转录因子12进而调节骨骼发育的E2F2,对骨骼与肌肉的发育和形成相关的PLA2G6,促进核糖体蛋�
王光凯曾滔王慧华张淑珍张莉魏彩虹赵福平杜立新
关键词:全基因组苏尼特羊
共1页<1>
聚类工具0