Anti-plane electroelastic problems are studied by the Trefftz boundary element method (BEM) in this paper. The Trefftz BEM is based on a weighted residual formulation and indirect boundary approach. In particular the point-collocation and Galerkin techniques, in which the basic unknowns are the retained expansion coefficients in the system of complete equations, are considered. Furthermore, special Trefftz functions and auxiliary functions which satisfy exactly the specified boundary conditions along the slit boundaries are also used to derive a special purpose element with local defects. The path-independent integral is evaluated at the tip of a crack to determine the energy release rate for a mode Ⅲ fracture problem. In final, the accuracy and efficiency of the Trefftz boundary element method are illustrated by an example and the comparison is made with other methods.
This paper demonstrates and analyses double heteroclinic tangency in a three-well potential model, which can produce three new types of bifurcations of basin boundaries including from smooth to Wada basin boundaries, from fractal to Wada basin boundaries in which no changes of accessible periodic orbits happen, and from Wada to Wada basin boundaries. In a model of mechanical oscillator, it shows that a Wada basin boundary can be smooth.