Peat bogs are regarded as one of the faithful archives of atmospheric polycyclic aromatic hydrocarbons(PAHs) deposition, and a large number of studies on PAHs accumulation in peatlands have been reported in Europe and North America. Comparatively little information is available on peat chronological records of atmospheric PAHs flux in China. We investigated the concentrations and historical accumulation rates of PAHs(AR PAHs) through geochemical analysis of three 210Pb-dated ombrotrophic peat cores from Great Hinggan Mountain, northeast China. Eight USEPA priority PAHs were detected and they are naphthalene(Nap), acenaphthylene(Acl), acenaphthene(Ace), fluorence(Flu), phenanthrene(Phe), anthracene(Ant), fluoranthene(Fla) and pyrene(Pyr), respectively. The average total eight PAHs(tPAHs) concentrations are 135.98- 262.43 μg kg-1 and the average AR tPAHs over the last two centuries are 96.45- 135.98 μg m-2 yr-1. The Ace, Acl and Phe account for 30.93- 54.04%, 25.29- 35.81%, and 9.14- 19.84% of the tPAHs, respectively, and have significant positive correlations with the tPAH. As a result, they are regarded as the iconic compounds of PAHs pollution in this area. A ca.200-yr atmospheric PAHs contamination history was reconstructed from the temporal sequences of bothconcentration and AR tPAHs, suggesting the variation of local environmental pollution. The main sources of the PAHs are identified by two isomer ratios as petrogenic origin including oil extraction and refining process as well as their combustions for industrial development. In addition, the contribution of coal combustion for industrial activities and resident heating could not be ignored. But prior to 1860, the undeveloped industry and most of agricultural activities might mainly account for the low level of PAHs, although it could infer a long-range input of atmospheric PAHs from other industrial areas. Therefore, there is a global implication to study longterm PAHs pollution records and all the results will provide practical significance in formulatin
BAO Kun-shanSHEN JiZHANG YanWANG JianWANG Guo-ping
The nitrogen (N) input and Spartina alterniflora invasion in the tidal marsh of the southeast of China are increasingly serious. To evaluate CH4 emissions in the tidal marsh as affected by the N inputs and S. alterniflora invasion, we measured CH4 emissions from plots with vegetated S. alterniflora and native Cyperus malaccensis, and fertilized with exogenous N at the rate of 0 (NO), 21 (N1) and 42 (N2) g N/(m2.yr), respectively, in the Shanyutan marsh in the Minjiang River estuary, the southeast of China. The average CH4 fluxes during the experiment in the C. malaccensis and S. alterniflora plots without N addition were 3.67 mg CHa/(m2.h) and 7.79 mg CH4/(m2-h), respectively, suggesting that the invasion of S. alterniflora into the Minjiang River estuary stimulated CH4 emission. Exogenous N had positive effects on CH4 fluxes both in native and in invaded tidal marsh. The mean CH4 fluxes of NI and N2 treat- ments increased by 31.05% and 123.50% in the C. malaccensis marsh, and 63.88% and 7.55% in the S. alterniflora marsh, respectively, compared to that of NO treatment. The CH4 fluxes in the two marshes were positively correlated with temperature and pH, and nega- tively correlated with electrical conductivity and redox potential (Eh) at different N addition treatments. While the relationships between CH4 fluxes and environmental variables (especially soil temperature, pH and Eh at different depths) tended to decrease with N additions. Significant temporal variability in CH4 fluxes were observed as the N was gradually added to the native and invaded marshes. In order to better assess the global climatic role of tidal marshes as affected by N addition, much more attention should be paid to the short-term temporal variability in CH4 emission.
Ombrotrophic bogs are faithful archive of atmospheric metal deposition, but the potential for fens to reconstruct environmental change is often underestimated. In this study, some new data on the Pb depositional history in northeast China were provided using two ^210Pb-dated peat sequences from a poor fen in the Fenghuang Mountain of Heilongjiang province. Anthropogenic, detritic and atmospheric soil sources were discriminated using a two-step sequential digestion (weak acid leaching to liberate mobile Pb which is often regarded as anthropogenic Pb, especially for recent samples) and a ratio of unsupported ^210Pb and supported ^210Pb with the logic of that the ^214Pb mainly represents the residual detritus (constant throughout the core) and the unsupported ^210Pb arises from atmospheric fallout. A higher ^210Pb/^214Pb suggests more contributions from atmospheric deposition to the Pb content in the peat, and a ratio of 10 was defined to indicate the boundary between detrific input and atmospheric deposition. The detritic Pb was estimated to be 10-13 mg·kg^-1, the anthropogenic Pb ranged from 10-80 mg·kg^-1, and the atmospheric soil-derived Pb ranged from 〈 5 mg·kg^-1 to 30 mg·kg^-1. The history of anthropogenic Pb pollution over the last 150 years was reconstructed, and the calculated Pb deposition rate (AR Pb) ranged from 5 to 56 mg·m^-2·yr^-1. Using Ti as a reliable reference, the enrichment factor of Pb (EF Pb) relative to the upper continental crust was calculated. Both AR Pb and EF Pb increased with time, especially after the foundation of the People's Republic of China. This is consistent with increasing industrialization and coal burning in the last 60 years in northeast China. The present record of anthropogenic Pb deposition was consistent with the previous reports and an increasing trend of environmental pollution due to anthropogenic activities, in contrasts to Europe and North America which have experienced a major environmental cleanup. For the first time, this work estimates
BAO Kun-shanSHEN JiWANG Guo-pingTSERENPIL Shurkhuu
In this article,the author provides the first synthesis and classification of available environment-indicating proxies for lacustrine sediment.A review of spatio-temporal variations in lakes from the Tibetan Plateau,the dry areas of Northwestern China,the Yunnan-Guizhou Plateau and the plains of Eastern China since the LGM is then provided.The driving mechanism for variations in lake processes and characteristics is also discussed based on various temporal scales.The author then proposes that future investigations be conducted to:(1) strengthen the study of theoretics and interpretation of environment-indicating proxies,(2) enhance the study of high-resolution time series and spatial variability of lake environment evolution,(3) provide more attention on the influence of human activities on lake environments,and(4) boost construction of the Quaternary lake database of China.