In this paper,we analyze the relation between the shape of the bounded traveling wave solutions and dissipation coefficient of nonlinear wave equation with cubic term by the theory and method of planar dynamical systems.Two critical values which can characterize the scale of dissipation effect are obtained.If dissipation effect is not less than a certain critical value,the traveling wave solutions appear as kink profile;while if it is less than this critical value,they appear as damped oscillatory.All expressions of bounded traveling wave solutions are presented,including exact expressions of bell and kink profile solitary wave solutions,as well as approximate expressions of damped oscillatory solutions.For approximate damped oscillatory solution,using homogenization principle,we give its error estimate by establishing the integral equation which reflects the relations between the exact and approximate solutions.It can be seen that the error is an infinitesimal decreasing in the exponential form.
In this paper, we apply the theory of planar dynamical systems to carry out qualitative analysis for the dynamical system corresponding to B-BBM equation, and obtain global phase portraits under various parameter conditions. Then, the relations between the behaviors of bounded traveling wave solutions and the dissipation coeffiicient μ are investigated. We find that a bounded traveling wave solution appears as a kink profile solitary wave solution when μ is more than the critical value obtained in this paper, while a bounded traveling wave solution appears as a damped oscillatory solution when μ is less than it. Furthermore, we explain the solitary wave solutions obtained in previous literature, and point out their positions in global phase portraits. In the meantime, approximate damped oscillatory solutions are given by means of undetermined coefficients method. Finally, based on integral equations that reflect the relations between the approximate damped oscillatory solutions and the implicit exact damped oscillatory solutions, error estimates for the approximate solutions are presented.