针对滚动轴承的故障振动信号的非平稳特性,提出了一种基于局部均值分解(Local mean decomposition,简称LMD)和神经网络的滚动轴承诊断方法。该方法首先对信号进行局部均值分解,将其分解为若干个PF分量(Product function,简称PF)之和,再选取包含主要故障信息的PF分量进行进一步分析,从这些分量中提取时域统计量和能量等特征参数作为神经网络的输入参数来识别滚动轴承的故障类别。通过对滚动轴承正常状态,内圈故障和外圈故障的分析,表明了基于LMD与神经网络的诊断方法比基于小波包分析与神经网络的诊断方法有更高的故障识别率,同时也证明了该方法可以准确、有效地对滚动轴承的工作状态和故障类型进行分类。
为了提取多分量调制信号的调制信息,研究了一种信号分析方法——局部均值分解(local mean decomposition,简称LMD)方法。LMD方法首先将一个多分量的调制信号自适应地分解成若干个具有一定物理意义的PF(product function)分量,其中每个PF分量为一个包络信号和一个纯调频信号的乘积,然后求出每个PF分量的瞬时幅值与瞬时频率,从而获得原信号完整的调制信息。本文用LMD方法对仿真信号以及齿轮故障振动信号进行了分析,结果表明该方法能有效地提取出信号的调制信息。