国家重点基础研究发展计划(2009CB825601) 作品数:7 被引量:7 H指数:1 相关作者: 吕红 余垚 雷秉坤 周楠 周幸 更多>> 相关机构: 复旦大学 第二军医大学 更多>> 发文基金: 国家自然科学基金 国家重点基础研究发展计划 国家教育部博士点基金 更多>> 相关领域: 生物学 更多>>
miR-106b/miR-93降低了宫颈癌细胞对顺铂化疗的敏感性 被引量:5 2014年 宫颈癌是仅次于乳腺癌的第二大妇科癌症.顺铂是临床上最常用的化疗药物,治疗过程中引起的顺铂抗性会导致化疗失败.越来越多的报道证实miRNA介导了癌症对化疗药物的敏感性.尽管已经发现miR-106b/miR-93促进多种癌症的发生发展,但是miR-106b/miR-93在宫颈癌中的功能鲜为人知.本研究发现miR-106b/miR-93在宫颈癌组织以及宫颈癌细胞系的表达高于正常宫颈组织.在HPV(+)宫颈癌细胞系中,miR-106b/miR-93的表达水平与细胞系对顺铂敏感性的程度相关;高表达miR-106b/miR-93可以降低宫颈癌细胞系对顺铂的敏感性;反之,miR-106b/miR-93的干扰表达可以提高宫颈癌细胞系对顺铂的敏感性.此外,我们发现RAD1是miR-106b/miR-93共同调控的靶基因.研究结果提示了miR-106b/miR-93通过负调控RAD1降低了宫颈癌对顺铂化疗的敏感性. 间学敏 张艳 戴宇 莫文娟 吕红关键词:宫颈癌 顺铂敏感性 裂殖酵母SAGA复合物亚基Spt20参与钙调蛋白磷酸酶调节的Cl^-胞内平衡 2013年 SAGA(Spt-Ada-Gcn5acetyltransferase)复合物是真核生物中高度保守的蛋白复合体,参与转录激活、mRNA转运等诸多生物学过程。为了探究SAGA复合物亚基的潜在生物学功能,文章以裂殖酵母(Schizosac-charomyces pombe)SAGA复合物核心结构亚基Spt20为诱饵蛋白进行酵母双杂交筛选,获得了Ppb1蛋白。Ppb1是真核生物重要信号分子-钙调蛋白磷酸酶的催化亚基。酵母双杂交验证及免疫共沉淀实验均表明Spt20与Ppb1可以在体内发生蛋白相互作用。裂殖酵母ppb1+缺失突变体对高浓度Cl敏感,而spt20+缺失突变体则能抵抗高浓度的外源Cl,维持细胞的正常生长。荧光共定位分析表明,当外源Cl浓度升高时,Ppb1蛋白能够从细胞质迁移入核,与Spt20蛋白在细胞核内发生共定位。遗传分析显示,spt20+缺失可以抑制ppb1+缺失突变体对Cl高度敏感的表型,spt20+与ppb1+处于Cl平衡调节的同一通路,且spt20+位于ppb1+的下游。上述结果表明,spt20+缺失突变体耐受外源高浓度Cl,Spt20参与了钙调蛋白磷酸酶调节的Cl胞内平衡。在高等生物中胞内Cl浓度异常升高与心肌缺血/再灌注损伤等疾病的发生密切相关。鉴于Spt20在真核生物中高度保守,Spt20可能成为潜在的药物靶点应用于Cl失衡相关疾病的防治中。 周楠 雷秉坤 周幸 余垚 吕红关键词:裂殖酵母 组蛋白H3K4甲基转移酶复合物亚基Ash2参与裂殖酵母产孢 2014年 在氮源缺乏及信息素存在的条件下,裂殖酵母(Schizosaccharomyces pombe)进行减数分裂并完成产孢。在此过程中,信息素介导的MAPK(Mitogen-activated protein kinases)信号通路调控减数分裂相关基因的表达。Spk1是MAPK通路的核心成员,通过蛋白磷酸化的方式激活转录因子Ste11,从而激活mei2+、mam2+和map3+等减数分裂相关基因的表达。尽管组蛋白H3K4甲基化参与基因转录激活、染色质重塑等诸多生物学过程,但其在裂殖酵母产孢过程中的作用并不清楚。文章通过序列比对,发现裂殖酵母Ash2作为H3K4甲基转移酶复合物COMPASS的亚基具有两个保守的结构域,定位于细胞核内参与H3K4的甲基化修饰。ash2+的缺失引起裂殖酵母在氮源缺乏时产孢过程的延迟及产孢率下降。ChIP、定量PCR分析结果显示,ash2+的缺失降低了spk1+编码区H3K4的二甲基化水平,造成spk1+mRNA水平的明显下调。在ash2Δ细胞中,虽然ste11+的转录水平没有变化,但Ste11的靶基因mei2+、mam2+和map3+的转录水平明显下降。在裂殖酵母中,组蛋白H3K4甲基转移酶复合物COMPASS的亚基Ash2通过调控二甲基化水平修饰从而调节MAPK信号通路,参与裂殖酵母的有性生殖,为建立表观遗传修饰与减数分裂之间的联系提供了新的线索。 王文超 周欢 余垚 吕红关键词:裂殖酵母 产孢 MAPK sgf73+在裂殖酵母中的大规模遗传筛选 2014年 遗传相互作用(Genetic interaction,GI)直接提示了生物体内各个基因在功能上的关联性,为研究一个基因的潜在功能提供了线索。遗传筛选是研究基因遗传相互作用的重要方法。文章以SAGA(Spt-Ada-Gcn5 acetyltransferase)复合物去泛素化模块亚基基因sgf73+为查询基因,在裂殖酵母(Schizosaccharomyces pombe)中进行了大规模遗传筛选。结果显示,164个基因与sgf73+具有负遗传相互作用,42个基因具有正遗传相互作用。GO(Gene ontology)分析结果表明,这些基因富集于染色质修饰、DNA损伤修复、压力应答、RNA转录等生物过程。通过组蛋白修饰检测实验首次发现,sgf73+的缺失导致组蛋白H3K9、H4K16位点乙酰化水平下降,H3K4位点甲基化修饰水平上升。此外,系列稀释实验显示sgf73?菌株对DNA损伤试剂HU和CPT的敏感性提高,并且Sgf73参与高氧胁迫应答。这些结果显示sgf73+参与了染色质修饰、DNA损伤修复和高氧压力应答过程。 郭雨辰 雷秉坤 邓小龙 余垚 吕红关键词:裂殖酵母 组蛋白修饰 DNA损伤修复 裂殖酵母Cnb1参与胞质分裂过程 2013年 丝/苏氨酸特异性钙调磷酸酶(Calcineurin,CN)是一种在真核生物中广泛存在的蛋白,是参与转录调控的重要分子。裂殖酵母中的CN是由催化亚基Ppb1和调节亚基Cnb1组成的异源二聚体。文章报道了裂殖酵母中cnb1+的缺失引起细胞生长速度缓慢,产生多隔膜现象,胞质分裂受阻滞。胞质分裂过程中,Cnb1与Ppb1组成CN复合物,与收缩环在分裂平面上共定位,并与收缩环一起收缩。cnb1Δ菌株的隔膜成熟过程存在缺陷,微管出现纵穿隔膜的现象。上述结果说明Cnb1可能参与隔膜的成熟过程。此外,还检测了cnb1菌株中胞裂蛋白的信号。胞裂蛋白包括Spn1、Spn2、Spn3和Spn4,它们是引导隔膜降解的重要分子。结果显示,在cnb1菌株中,80%左右的细胞在隔膜处缺失Spn2和Spn3的信号,20%左右的细胞缺失Spn1和Spn4的信号。由于胞裂蛋白的蛋白表达量在cnb1中没有降低,因此胞裂蛋白信号的消失不是转录缺陷引起的,这暗示Cnb1可能采用了不依赖转录的方式来调控胞裂蛋白环的稳定性。以上结果提示,Cnb1可能通过影响隔膜的成熟及胞裂蛋白环的稳定性参与调节裂殖酵母的胞质分裂过程。 范洁琼 邓小龙 冯碧薇 王继峰 余垚 吕红关键词:裂殖酵母 胞质分裂 裂殖酵母SAGA各亚基亚细胞荧光定位分析 被引量:1 2014年 SAGA(Spt-Ada-Gcn5 Acetyltransferase complex)是一个多亚基保守的转录复合物,在裂殖酵母(Schizosaccharomyces pombe)里由19个亚基组成,调控体内10%基因的转录。文章通过构建原位整合荧光菌株,完整地分析了SAGA所有亚基的亚细胞荧光定位。荧光数据显示这些亚基的定位可分为4种类型,提示SAGA亚基除共同参与转录调控之外,可能还有其他功能。SAGA亚基Sgf73是联系去泛素化模块与SAGA其他模块的桥梁,它的缺失不仅明显减少了去泛素化亚基Ubp8、Sgf11、Sus1核内的定位,同时也影响了乙酰化亚基Gcn5、Sgf29、Ngg1以及核心结构亚基Spt7在细胞核内的定位,这提示Sgf73对维持SAGA的酶学功能和稳定性至关重要。另外,sgf73+的缺失还造成了胞质分裂的缺陷,导致细胞出现多核多膈膜表型。在△sgf73里过量表达膈膜降解途径中的关键基因ace2+和mid2+的回补结果表明,ace2+不能回补sgf73+缺失造成的缺陷,而mid2+也仅能部分回补,提示Sgf73可能还通过其他途径影响了胞质分裂。 周幸 周楠 余壵 吕红关键词:SAGA 胞质分裂 酵母模式生物研究表观遗传调控基因组稳定性的进展 被引量:1 2010年 基因组的遗传稳定性是维持正常的细胞复制、增殖和分化的关键。外源因素和内源因素造成的DNA损伤及其修复失败,是各种遗传疾病发生的根本原因。表观遗传调控(包括DNA甲基化、组蛋白修饰和非编码RNA)在DNA损伤修复和细胞周期调控方面发挥着重要的作用,也是维持基因组稳定性的基础。酵母作为单细胞真核生物,是最早开展表观遗传学研究的物种之一,特别是在DNA损伤修复和异染色质形成等方面的研究,为揭示遗传稳定性的本质提供了理论依据。国际上前期以酵母为模式生物研究表观遗传学的报道主要集中于组蛋白修饰领域;近期利用裂殖酵母作为模式生物研究RNAi指导的组蛋白修饰也有了一定的进展。文章以酵母作为模式生物,论述了表观遗传修饰在维持基因组遗传稳定性中的研究进展、作用机制和今后的发展趋势。 冯碧薇 陈建强 雷秉坤 潘贤 吕红关键词:酵母 表观遗传调控 基因组稳定性 组蛋白修饰 RNAI 模式酵母基因组稳定性维持的分子机制 基因组无时无刻不受到来自外界(如紫外线、辐射、化学试剂等)和来自生命内部(如DNA复制错配、减数分裂重组错配等)带来的DNA损伤的威胁,而这些损伤正是癌症发生、衰老、免疫缺陷以及一些退行性疾病的根源。细胞为了维持基因组的... 潘贤 雷秉坤 冯碧薇 周楠 余垚 吕红文献传递