In this paper, one-dimensional (1D) nonlinear Schrdinger equation iut-uxx + Mσ u + f ( | u | 2 )u = 0, t, x ∈ R , subject to periodic boundary conditions is considered, where the nonlinearity f is a real analytic function near u = 0 with f (0) = 0, f (0) = 0, and the Floquet multiplier Mσ is defined as Mσe inx = σne inx , with σn = σ, when n 0, otherwise, σn = 0. It is proved that for each given 0 < σ < 1, and each given integer b > 1, the above equation admits a Whitney smooth family of small-amplitude quasi-periodic solutions with b-dimensional Diophantine frequencies, corresponding to b-dimensional invariant tori of an associated infinite-dimensional Hamiltonian system. Moreover, these b-dimensional Diophantine frequencies are the small dilation of a prescribed Diophantine vector. The proof is based on a partial Birkhoff normal form reduction and an improved KAM method.
REN Xiu-Fang Department of Mathematics, Nanjing University, Nanjing 210093, China
In this paper, we consider the higher dimensional nonlinear beam equation:utt+△2u+σu + f(u)=0 with periodic boundary conditions, where the nonlinearity f(u) is a real-analytic function of the form f(u)=u3+ h.o.t near u=0 and σ is a positive constant. It is proved that for any fixed σ>0, the above equation admits a family of small-amplitude, linearly stable quasi-periodic solutions corresponding to finite dimensional invariant tori of an associated infinite dimensional dynamical system.