A λ harmonic graph G, a λ-Hgraph G for short, means that there exists a constant λ such that the equality λd(vi) = Σ(vi,vj)∈E(G) d(vj) holds for all i = 1, 2,..., |V(G)|, where d(vi) denotes the degree of vertex vi. Let ni denote the number of vertices with degree i. This paper deals with the 3-Hgraphs and determines their degree series. Moreover, the 3-Hgraphs with bounded ni (1 ≤ i ≤ 7) are studied and some interesting results are obtained.
A λ harmonic graph G, a λ-Hgraph G for short, means that there exists a constant A such that the equality λd(ui) = ∑(vi,vj)∈E(G) d(vj) holds for all i = 1, 2,…, |V(G)|, where d(vi) denotes the degree of vertex vi. In this paper, some harmonic properties of the complement and line graph are given, and some algebraic properties for the λ-Hgraphs are obtained.
Let G be a simple graph with n vertices and m edges. Let λ1, λ2,…, λn, be the adjacency spectrum of G, and let μ1, μ2,…, μn be the Laplacian spectrum of G. The energy of G is E(G) = n∑i=1|λi|, while the Laplacian energy of G is defined as LE(G) = n∑i=1|μi-2m/n| Let γ1, γ2, ~ …, γn be the eigenvalues of Hermite matrix A. The energy of Hermite matrix as HE(A) = n∑i=1|γi-tr(A)/n| is defined and investigated in this paper. It is a natural generalization of E(G) and LE(G). Thus all properties about energy in unity can be handled by HE(A).