In eukaryotic cells, chromatin transformation from euchromatin into heterochromatin as a means of controlling gene expression and replication has been known as the ‘‘accessibility hypothesis' '. The interplay of epigenetic changes including histone modifications, DNA methylation, RNA interference(RNAi) and other func- tional epigenetic components are intricate. It is believed that these changes are well-programmed, inherited and can be modified by environmental contaminant stressors. Environmentally-driven epigenetic alterations during development, e.g. embryonic, foetal or neonatal stage, may influence disease susceptibility in adulthood. Therefore, understanding how epigenome modifications develop in response to environmental chemicals and, how epigenetic-xenobiotic interactions influence human health will shed new insights into gene-environment interactions in the epidemiology of several diseases including cancer. In this review, we consider studies of chemical modifiers including nutritional and xenobiotic effects on epigenetic components in vitro or in vivo. By examining the most-studied epigenome modifications and how their respective roles are interlinked, we highlight the central role of xenbiotic- modified epigenetic mechanisms. A major requirement will be to study and understand effects following environmentally-relevant exposures. We suggest that the study of epigenetic toxicology will open up new opportunities to devise strategies for the prevention or treatment of at-risk populations.