Over the past two decades, magnetoclimatological studies of loess-paleosol sequences in the Chinese Loess Plateau (CLP) have made outstanding achievements, which greatly promote the understanding of East Asian paleomonsoon evolution, inland aridification of Asia, and past global climate changes. Loess magnetic properties of the CLP have been well studied. In contrast, loess magnetic properties from outside the CLP in China have not been fully understood. We have little knowledge about the magnetic properties of loess in the Ili Basin, an intermontane depression of the Tianshan (or Tien Shan) Mountains. Here, we present the results of rock magnetic measurements of the Ili loess including mass magnetic susceptibility (χ) and anhysteretic remanent magnetization (ARM), high/low temperature dependence of susceptibility (TDS) and hysteresis, as well as X-ray diffraction (XRD) for mineral analysis. Based on the comparison with loess-paleosol sequences in the CLP (hereafter referred to as the Chinese loess), we discuss the possible magnetic susceptibility enhancement mechanism of the Ili loess. The results show that 1) the total magnetic mineral concentration of the Ili loess is far lower than that of the Chinese loess, though they have similar magnetic mineral compositions. The ferrimagnetic minerals in the Ili loess are magnetite and maghemite, and the antiferromagnetic mineral is hematite; XRD analysis also identifies the presence of ilmenite. The ratio of maghemite is lower in the Ili loess than in the Chinese loess, but the ratios of magnetite and hematite are higher in the Ili loess than in the Chinese loess. 2) The granularity of magnetic minerals in the Ili loess, dominated by pseudo-single domain (PSD) and multi-domain (MD) grains, is generally much coarser than that of the Chinese loess. Ultrafine pedogenically-produced magnetic grains have a very limited contribution to the susceptibility enhancement. Rather, PSD and MD particles of magnetite and maghemite are the main contributors to the enhancement of susce