A type of stochastic interval delayed Hopfield neural networks as du(t) = [-AIu(t) + WIf(t,u(t)) + WIτf7τ(uτ(t)] dt +σ(t, u(t), uτ(t)) dw(t) on t≥0 with initiated value u(s) = ζ(s) on - τ≤s≤0 has been studied. By using the Razumikhin theorem and Lyapunov functions, some sufficient conditions of their globally asymptotic robust stability and global exponential stability on such systems have been given. All the results obtained are generalizations of some recent ones reported in the literature for uncertain neural networks with constant delays or their certain cases.
In this paper, the stabilization problem for uncertain systems with time-varying delays both in state and control are discussed. A stabilization criterion is obtained to guarantee the quadratic stability of the closed-loop system. The controller gain matrix is included in an Hamiltonian matrix, which is easily constructed by the boundedness of the uncertainties.
In this paper, the concept of globally exponentially attractive set is proposed and used to consider the ultimate bounds of the family of Lorenz systems with varying parameters. Explicit estimations of the ultimate bounds are derived. The results presented in this paper contain all the existing results as special cases. In particular, the critical cases, b→ 1^+ and a→0^+, for which the previous methods failed, have been solved using a unified formula.